2013年全國(guó)高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 文

上傳人:xian****hua 文檔編號(hào):147506572 上傳時(shí)間:2022-09-02 格式:DOC 頁(yè)數(shù):4 大?。?6KB
收藏 版權(quán)申訴 舉報(bào) 下載
2013年全國(guó)高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 文_第1頁(yè)
第1頁(yè) / 共4頁(yè)
2013年全國(guó)高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 文_第2頁(yè)
第2頁(yè) / 共4頁(yè)
2013年全國(guó)高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 文_第3頁(yè)
第3頁(yè) / 共4頁(yè)

下載文檔到電腦,查找使用更方便

11.8 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2013年全國(guó)高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2013年全國(guó)高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 文(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專題升級(jí)訓(xùn)練9 等差數(shù)列、等比數(shù)列 (時(shí)間:60分鐘 滿分:100分) 一、選擇題(本大題共6小題,每小題6分,共36分) 1.已知數(shù)列{an}滿足a1=1,且=,則a2 012=(  ). A.2 010 B.2 011 C.2 012 D.2 013 2.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a7a8a9=10,則a4a5a6=(  ). A.5 B.4 C.6 D.7 3.已知實(shí)數(shù)列-1,x,y,z,-2成等比數(shù)列,則xyz=(  ). A.-4 B.±4 C.-2 D.±2

2、 4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若=a1+a200,且A,B,C三點(diǎn)共線(該直線不過(guò)原點(diǎn)O),則S200=(  ). A.100 B.101 C.200 D.201 5.已知{an}為等比數(shù)列,Sn是它的前n項(xiàng)和.若a2·a3=2a1,且a4與2a7的等差中項(xiàng)為,則S5=(  ). A.35 B.33 C.31 D.29 6.設(shè){an},{bn}分別為等差數(shù)列與等比數(shù)列,且a1=b1=4,a4=b4=1,則以下結(jié)論正確的是(  ). A.a(chǎn)2>b2 B.a(chǎn)3<b3 C.a(chǎn)5>b5 D.a(chǎn)6>

3、b6 二、填空題(本大題共3小題,每小題6分,共18分) 7.定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的積都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公積,已知數(shù)列{an}是等積數(shù)列,且a1=3,公積為15,那么a21=________. 8.在數(shù)列{an}中,如果對(duì)任意n∈N都有=k(k為常數(shù)),則稱數(shù)列{an}為等差比數(shù)列,k稱為公差比.現(xiàn)給出下列命題: ①等差比數(shù)列的公差比一定不為零; ②等差數(shù)列一定是等差比數(shù)列; ③若an=-3n+2,則數(shù)列{an}是等差比數(shù)列; ④若等比數(shù)列是等差比數(shù)列,則其公比等于公差比. 其中正確命題的序號(hào)為__

4、________. 9.已知a,b,c是遞減的等差數(shù)列,若將其中兩個(gè)數(shù)的位置互換,得到一個(gè)等比數(shù)列,則=__________. 三、解答題(本大題共3小題,共46分.解答應(yīng)寫出必要的文字說(shuō)明、證明過(guò)程或演算步驟) 10.(本小題滿分15分)設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知S3與S4的等比中項(xiàng)為S5,S3與S4的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng). 11.(本小題滿分15分)已知數(shù)列{an}為公差不為零的等差數(shù)列,a1=1,各項(xiàng)均為正數(shù)的等比數(shù)列{bn}的第1項(xiàng)、第3項(xiàng)、第5項(xiàng)分別是a1,a3,a21. (1)求數(shù)列{an}與{bn}的通項(xiàng)公式; (2)求數(shù)列{anbn}的前

5、n項(xiàng)和. 12.(本小題滿分16分)等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1+,S3=9+3. (1)求數(shù)列{an}的通項(xiàng)an與前n項(xiàng)和Sn; (2)設(shè)bn=(n∈N*),求證:數(shù)列{bn}中任意不同的三項(xiàng)都不可能成為等比數(shù)列. 參考答案 一、選擇題 1.C 解析:由=,可得an=n,故a2 012=2 012. 2.A 解析:(a1a2a3)·(a7a8a9)=a=50,且an>0, ∴a4a5a6=a=5. 3.C 解析:因?yàn)椋?,x,y,z,-2成等比數(shù)列,由等比數(shù)列的性質(zhì)可知y2=xz=(-1)×(-2)=2. 又y是數(shù)列的第三項(xiàng),與第一項(xiàng)的符號(hào)相同, 故y

6、=-,所以xyz=-2. 4.A 解析:∵=a1+a200,且A,B,C三點(diǎn)共線, ∴a1+a200=1,故根據(jù)等差數(shù)列的前n項(xiàng)和公式得S200==100. 5.C 解析:設(shè){an}的公比為q,則由等比數(shù)列的性質(zhì)知a2·a3=a1·a4=2a1,即a4=2. 由a4與2a7的等差中項(xiàng)為,得a4+2a7=2×,即a7===. ∴q3==,即q=. 由a4=a1q3=a1×=2,得a1=16, ∴S5=a1+a2+a3+a4+a5=16+8+4+2+1=31. 6.A 解析:設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q,由a1=b1=4,a4=b4=1,得d=-1,q=

7、,∴a2=3,b2=2;a3=2,b3=;a5=0,b5=;a6=-1,b6=.故選A. 二、填空題 7.3 解析:由題意知an·an+1=15,即a2=5,a3=3,a4=5,…觀察可得:數(shù)列的奇數(shù)項(xiàng)都為3,偶數(shù)項(xiàng)都為5.故a21=3. 8.①③④ 解析:若k=0,{an}為常數(shù)列,分母無(wú)意義,①正確;公差為零的等差數(shù)列不是等差比數(shù)列,②錯(cuò)誤;=3,滿足定義,③正確;設(shè)an=a1qn-1(q≠0), 則==q,④正確. 9.20 解析:依題意得①或者②或者③ 由①得a=b=c,這與a,b,c是遞減的等差數(shù)列矛盾;由②消去c整理得(a-b)(a+2b)=0. 又a>b,因此有a=

8、-2b,c=4b,故=20; 由③消去a整理得(c-b)(c+2b)=0. 又b>c,因此有c=-2b,a=4b,故=20. 三、解答題 10.解:由已知得即 解得或 ∴an=1或an=-n. 經(jīng)驗(yàn)證an=1或an=-n均滿足題意,即為所求. 11.解:(1)設(shè)數(shù)列{an}的公差為d(d≠0),數(shù)列{bn}的公比為q(q>0), 由題意得a=a1a21, ∴(1+2d)2=1×(1+20d), ∴4d2-16d=0. ∵d≠0,∴d=4.∴an=4n-3. 于是b1`=1,b3=9,b5=81,{bn}的各項(xiàng)均為正數(shù), ∴q=3.∴bn=3n-1. (2)anbn

9、=(4n-3)3n-1, ∴Sn=30+5×31+9×32+…+(4n-7)×3n-2+(4n-3)×3n-1, 3Sn=31+5×32+9×33+…+(4n-7)×3n-1+(4n-3)×3n. 兩式兩邊分別相減得 -2Sn=1+4×3+4×32+4×33+…+4×3n-1-(4n-3)×3n =1+4(3+32+33+…+3n-1)-(4n-3)×3n =1+-(4n-3)×3n =(5-4n)×3n-5, ∴Sn=. 12.(1)解:由已知得 ∴d=2. 故an=2n-1+,Sn=n(n+). (2)證明:由(1)得bn==n+. 假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r互不相等)成等比數(shù)列, 則b=bpbr,即(q+)2=(p+)(r+), ∴(q2-pr)+(2q-p-r)=0. ∵p,q,r∈N*, ∴ ∴2=pr,(p-r)2=0. ∴p=r,這與p≠r矛盾. ∴數(shù)列{bn}中任意不同的三項(xiàng)都不可能成為等比數(shù)列.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!