機械振動的基本理論.ppt
《機械振動的基本理論.ppt》由會員分享,可在線閱讀,更多相關(guān)《機械振動的基本理論.ppt(36頁珍藏版)》請在裝配圖網(wǎng)上搜索。
,返回總目錄,,,振動理論與應用,第1章 振動的基本理論,,Theory of Vibration with Applications,Theory of Vibration with Applications,,,引 言,振動是一種運動形態(tài),是指物體在平衡位置附近作往復運動。 物理學知識的深化和擴展-物理學中研究質(zhì)點的振動;工程力學研究研究系統(tǒng)的振動,以及工程構(gòu)件和工程結(jié)構(gòu)的振動。 振動屬于動力學第二類問題-已知主動力求運動。,返回首頁,Theory of Vibration with Applications,振動理論與應用,,,振動問題的研究方法-與分析其他動力學問題相類似:,選擇合適的廣義坐標; 分析運動; 分析受力; 選擇合適的動力學定理; 建立運動微分方程; 求解運動微分方程,利用初始條件確定積分常數(shù)。,返回首頁,引 言,Theory of Vibration with Applications,振動理論與應用,,,振動問題的研究方法-與分析其他動力學問題不同的是:一般情形下,都選擇平衡位置作為廣義坐標的原點。,研究振動問題所用的動力學定理:,矢量動力學基礎(chǔ)中的-動量定理; 動量矩定理; 動能定理; 達朗伯原理。 分析動力學基礎(chǔ)中的-拉格朗日方程。,返回首頁,引 言,Theory of Vibration with Applications,振動理論與應用,,,振動概述,所考察的系統(tǒng)既有慣性又有彈性。 運動微分方程中,既有等效質(zhì)量,又有等效剛度。,振動問題的共同特點,返回首頁,Theory of Vibration with Applications,振動理論與應用,,,Theory of Vibration with Applications,返回首頁,Theoretical Mechanics,第1章 振動的基本理論,1.1 振動系統(tǒng) 1.2 簡諧振動 1.3 周期振動的諧波分析 1.4 非周期函數(shù)的連續(xù)頻譜,目 錄,,返回首頁,Theory of Vibration with Applications,1.1 振動系統(tǒng),第1章 振動的基本理論,,,返回首頁,Theory of Vibration with Applications,1.1 振動系統(tǒng),振動系統(tǒng)一般可分為連續(xù)系統(tǒng)或離散系統(tǒng)。 具有連續(xù)分布的質(zhì)量與彈性的系統(tǒng),稱為連續(xù)彈性體系統(tǒng)。彈性體是具有無限多自由度的系統(tǒng),它的振動規(guī)律要用時間和空間坐標的函數(shù)來描述,其運動方程是偏微分方程。,在一般情況下,要對連續(xù)系統(tǒng)進行簡化,用適當?shù)臏蕜t將分布參數(shù)“凝縮”成有限個離散的參數(shù),這樣便得到離散系統(tǒng)。所建立的振動方程是常微分方程。由于所具有的自由度數(shù)目上的區(qū)別,離散系統(tǒng)又稱為多自由度系統(tǒng)。,,,按系統(tǒng)的自由度劃分:,振動問題的分類,單自由度振動-一個自由度系統(tǒng)的振動。 多自由度振動-兩個或兩個以上自由度系統(tǒng)的 振動。 連續(xù)系統(tǒng)振動-連續(xù)彈性體的振動。這種系統(tǒng) 具有無窮多個自由度。,返回首頁,振動概述,Theory of Vibration with Applications,1.1 振動系統(tǒng),,,按系統(tǒng)特性或運動微分方程類型劃分:,振動問題的分類,線性振動-系統(tǒng)的運動微分方程為線性方程的振動。,非線性振動-系統(tǒng)的剛度呈非線性特性時,將得到非線性運動微分方程,這種系統(tǒng)的振動稱為非線性振動。,返回首頁,Theory of Vibration with Applications,1.1 振動系統(tǒng),,,返回首頁,Theory of Vibration with Applications,1.1 振動系統(tǒng),線性振動:相應的系統(tǒng)稱為線性系統(tǒng)。 線性振動的一個重要特性是線性疊加原理成立。 非線性振動:相應的系統(tǒng)稱為非線性系統(tǒng)。 非線性振動的疊加原理不成立。,,,按激勵特性劃分:,振動問題的分類,自由振動-沒有外部激勵,或者外部激勵除去后,系統(tǒng)自身的振動。 受迫振動-系統(tǒng)在作為時間函數(shù)的外部激勵下發(fā)生的振動,這種外部激勵不受系統(tǒng)運動的影響。 自激振動-系統(tǒng)由系統(tǒng)本身運動所誘發(fā)和控制的激勵下發(fā)生的振動。 參激振動-激勵源為系統(tǒng)本身含隨時間變化的參數(shù),這種激勵所引起的振動。,返回首頁,振動概述,Theory of Vibration with Applications,1.1 振動系統(tǒng),,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,第1章 振動的基本理論,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.1簡諧振動的表示,1. 用正弦函數(shù)表示簡諧振動 用時間t的正弦(或余弦)函數(shù)表示的簡諧振動。其一般表達式為,一次振動循環(huán)所需的時間T 稱為周期;單位時間內(nèi)振動循環(huán)的次數(shù)f 稱為頻率。,周期T的單位為秒(s),頻率f的單位為赫茲(Hz),,圓頻率 的單位為弧度/秒(rad/s)。,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.1簡諧振動的表示,圖描述了用正弦函數(shù)表示的簡諧振動,它可看成是該圖中左邊半徑為A的圓上一點作等角速度 的運動時在x軸上的投影。,如果視x為位移,則簡諧振動的速度和加速度就是位移表達式關(guān)于時間t的一階和二階導數(shù),即,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.1簡諧振動的表示,可見,若位移為簡諧函數(shù),其速度和加速度也是簡諧函數(shù),具有相同的頻率。,在相位上,速度和加速度分別超前位移 和 。,重要特征:簡諧振動的加速度大小與位移成正比,但方向總是與位移相反,始終指向平衡位置。,可得到加速度與位移有如下關(guān)系,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.1簡諧振動的表示,旋轉(zhuǎn)矢量OM 的模為振幅A,角速度為圓頻率 ,任一瞬時OM 在縱軸上的投影ON 即為簡諧振動表達式,2. 用旋轉(zhuǎn)矢量表示簡諧振動,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.1簡諧振動的表示,記 , 復數(shù),復數(shù)Z的實部和虛部可分別表示為,簡諧振動的位移x與它的復數(shù)表示z的關(guān)系可寫為,3. 用復數(shù)表示簡諧振動,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.1簡諧振動的表示,由于,用復數(shù)表示的簡諧振動的速度加速度為,也可寫成,是一復數(shù),稱為復振幅。它包含了振動的振幅和相角兩個信息。用復指數(shù)形式描述簡諧振動將給運算帶來很多方便。,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.2簡諧振動的合成,1. 兩個同頻率振動的合成,有兩個同頻率的簡諧振動,由于A1 、A2的角速度相等,旋轉(zhuǎn)時它們之間的夾角( )保持不變,合矢量A也必然以相同的角速度 作勻速轉(zhuǎn)動,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.2簡諧振動的合成,由矢量的投影定理,A =A1 +A2,即兩個同頻率簡諧振動合成的結(jié)果仍然是簡諧振動,其角頻率與原來簡諧振動的相同,其振幅和初相角用上式確定。,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.2簡諧振動的合成,2、兩個不同頻率振動的合成 有兩個不同頻率的簡諧振動,,,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.2簡諧振動的合成,當頻率比為有理數(shù)時,合成為周期振動,但不是簡諧振動,合成振動的周期是兩個簡諧振動周期的最小公倍數(shù)。,若 與 之比是無理數(shù),則無這樣一個周期。其合成振動是非周期的。,若 ,對于 ,則有,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.2簡諧振動的合成,令,式中的正弦函數(shù)完成了幾個循環(huán)后,余弦函數(shù)才能完成一個循環(huán)。這是一個頻率為 的變幅振動,振幅在2A與零之間緩慢地周期性變化。,它的包絡(luò)線,,,返回首頁,Theory of Vibration with Applications,1.2 簡諧振動,1.2.2簡諧振動的合成,這種特殊的振動現(xiàn)象稱為“拍”,或者說“拍”是一個具有慢變振幅的振動,,返回首頁,Theory of Vibration with Applications,1.3 周期振動的諧波分析,第1章 振動的基本理論,,,返回首頁,Theory of Vibration with Applications,1.3 周期振動的諧波分析,周期振動,展成傅氏級數(shù),n=1,2,3,……,n=1,2,3,……,,,返回首頁,Theory of Vibration with Applications,1.3 周期振動的諧波分析,一個周期振動可視為頻率順次為基頻 及整倍數(shù)的若干或無數(shù)簡諧振動分量的合成振動過程。,在振動力學中將傅氏展開稱為諧波分析,周期函數(shù)的幅值頻譜圖,相位頻譜圖。,周期函數(shù)的譜線是互相分開的,故稱為離散頻譜。,,,返回首頁,Theory of Vibration with Applications,1.3 周期振動的諧波分析,函數(shù)的頻譜,說明了組成該函數(shù)的簡諧成分,反映了該周期函數(shù)的特性。 這種分析振動的方法稱為頻譜分析。 由于自變量由時間改變?yōu)轭l率,所以頻譜分析實際上是由時間域轉(zhuǎn)入頻率域。 這是將周期振動展開為傅里葉級數(shù)的另一個物理意義。,,,返回首頁,Theory of Vibration with Applications,1.3 周期振動的諧波分析,周期振動的諧波分析以無窮級數(shù)出現(xiàn),但一般可以用有限項近似表示周期振動。 例1.1 已知一周期性矩形波如圖所示,試對其作諧波分析。,解∶矩形波一個周期內(nèi)函數(shù)F (t)可表示為,表示F(t)的波形關(guān)于t軸對稱,故其平均值為零。,,,返回首頁,Theory of Vibration with Applications,1.3 周期振動的諧波分析,n=1,2,3……,于是,得F(t)的傅氏級數(shù),F(t)是奇函數(shù),在它的傅氏級數(shù)中也只含正弦函數(shù)項。在實際的振動計算中,根據(jù)精度要求,級數(shù)均取有限項。F(t)的幅值頻譜如圖所示。,,返回首頁,Theory of Vibration with Applications,1.4 非周期函數(shù)的連續(xù)頻譜,第1章 振動的基本理論,,,返回首頁,Theory of Vibration with Applications,1.4 非周期函數(shù)的連續(xù)頻譜,函數(shù)f ( t )的傅氏積分公式,f ( t )的傅氏變換,又稱非周期函數(shù)f ( t )的頻譜函數(shù)。頻譜函數(shù)的值一般是復數(shù)。,連續(xù)頻譜,,,返回首頁,Theory of Vibration with Applications,1.4 非周期函數(shù)的連續(xù)頻譜,例1-2 試求圖所示的單個矩形脈沖的頻譜圖形。,,可求得頻譜函數(shù),f (t)的傅氏積分為,解: f ( t )可表示為,,,返回首頁,Theory of Vibration with Applications,1.4 非周期函數(shù)的連續(xù)頻譜,其振幅頻譜,頻譜圖,傅氏積分和變換,是研究瞬態(tài)振動與隨機振動的重要工具。實際應用時,可使用計算機運算或應用各種快速傅氏分析儀器(FFT)。,謝謝,- 1.請仔細閱讀文檔,確保文檔完整性,對于不預覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 機械振動 基本理論
鏈接地址:http://kudomayuko.com/p-1777880.html