【創(chuàng)新設(shè)計】高考數(shù)學第十一篇第8講二項分布與正態(tài)分布限時訓練新人教A版
《【創(chuàng)新設(shè)計】高考數(shù)學第十一篇第8講二項分布與正態(tài)分布限時訓練新人教A版》由會員分享,可在線閱讀,更多相關(guān)《【創(chuàng)新設(shè)計】高考數(shù)學第十一篇第8講二項分布與正態(tài)分布限時訓練新人教A版(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第 8 講 二項分布與正態(tài)分布 A 級 基礎(chǔ)演練 ( 時間: 30 分鐘 滿分: 55 分 ) 一、選擇題 ( 每小題 5 分,共 20 分 ) 1.(2011 湖北 ) 如圖,用 K、A1、 A2 三類不同的元件連 接成一個系統(tǒng),當 K 正常工作且 A1、A2 至少有一個正 常工作時,系統(tǒng)正常工作,已知 K、 A1、 A2 正常工作 的概率依次為 0.9,0.8,0.8 ,則系統(tǒng)正常工作的概率為 ( ) . A. 0.960 B. 0.864 C. 0.720 D. 0.576 解析
2、 P=0.9 [1 - (1 -0.8) 2] = 0.864. 答案 B 2. (201 1廣東 ) 甲、乙兩隊進行排球決賽,現(xiàn)在的情形是甲隊只要再贏一局就獲冠軍,乙 隊需要再贏兩局才能得冠軍.若兩隊勝每局的概率相同,則甲隊獲得冠軍的概率為 ( ) . 3 2 3 1 A. 4 B. 3 C. 5 D. 2 1 解析 問題等價為兩類:第一類,第一局甲贏,其概率 P1= ;第二類,需比賽 2 局,第 2 1 1 1 3 一局甲負,第二局甲贏,其概率 P2=
3、 2 2= 4. 故甲隊獲得冠軍的概率為 P1+ P2=4. 答案 A 3.在 4 次獨立重復試驗中, 隨機事件 A 恰好發(fā)生 1 次的概率不大于其恰好發(fā)生兩次的概率, 則事件 A 在一次試驗中發(fā)生的概率 p 的取值范圍是 ( ) . A. [0.4,1] B. (0,0.4] C. (0,0.6] D. [0.6,1] 解析 設(shè)事件 A
4、
發(fā)生的概率為
p
1
(1 -
3
2
2
2
p
≥0.4 ,故選 A.
,則 C4
)
≤C (1
- ) ,解得
p
p
4
p
p
答案
A
4.設(shè)隨機變量 X 服從正態(tài)分布 N(2,9)
,若 P( X>c+ 1) = P( X 5、
解析
∵ μ = 2,由正態(tài)分布的定義, 知其函數(shù)圖象關(guān)于
x= 2 對稱,于是
c+ 1+ c-1
= 2,
2
∴ c= 2.
答案 B
1
二、填空題 ( 每小題 5 分,共 10 分 )
5.(2013 臺州二模 ) 某次知識競賽規(guī)則如下:在主辦方預(yù)設(shè)的
5 個問題中,選手若能連續(xù)
正確回答出兩個問題,即停止答題,晉級下一輪.假設(shè)某選手正確回答每個問題的概率
都是
6、
0.8 ,且每個問題的回答結(jié)果相互獨立,則該選手恰好回答了
4 個問題就晉級下一
輪的概率等于 ________.
解析
由已知條件第
2 個問題答錯, 第 3、4 個問題答對, 記“問題回答正確”事件為
A,
則 P( A) = 0.8 ,P= P[
-
-
A∪ A
AAA] =(1 - P( A)] P( A) P( A) = 0.128.
答案
0.128
6.設(shè)隨機變量 X 服從正態(tài)分布
N(0,1) ,如果 P( X≤1) = 0.8413 ,則 P( - 1 7、0) = ________.
解析
∵ P( X≤1) = 0.841 3
,
∴ P( X>1) = 1- P( X≤1) = 1- 0.841 3 = 0.158 7.
∵ X~ N(0,1) ,∴ μ = 0.
∴ P( X<- 1) = P( X>1) = 0.158 7 ,
∴ P( -1 8、12 分 ) 設(shè)在一次數(shù)學考試中,某班學生的分數(shù) X~ N(110,20 2) ,且知試卷滿分 150 分,
這個班的學生共 54 人,求這個班在這次數(shù)學考試中及格 ( 即 90 分以上 ) 的人數(shù)和 130 分
以上的人數(shù).
解 由題意得 μ= 110, σ= 20, P( X≥90) = P( X-110≥- 20) = P( X- μ≥- σ ) ,
∵ P( X-μ <- σ) + P( - σ≤ X- μ≤ σ ) + P( X- μ >σ)
= 2P( X- μ <- σ) + 0.682 6 = 1, ∴ P( X-μ <- σ) = 0.158 9、7 ,
∴ P( X≥90) = 1-P( X- μ<- σ ) =1- 0.158 7 = 0.841 3.
∴540.841 3 ≈45( 人 ) ,即及格人數(shù)約為
45 人.
∵ P( X≥130) = P( X-110≥20 ) = P( X- μ ≥ σ) ,
∴ P( X-μ ≤- σ) + P( -σ ≤ X- μ≤ σ ) + P( X- μ >σ )
= 0.682 6 + 2P( X- μ ≥ σ) = 1,
∴ P( X-μ ≥ σ ) = 0.158 7. ∴540.158 7 ≈9( 人 ) ,
即 130 分以上的人 10、數(shù)約為
9 人.
8. (13 分)(2012 重慶 ) 甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲
2
3 次時投籃結(jié)束. 設(shè)甲每次投籃投中的概率為
1
勝,一直到有人獲勝或每人都已投球
3,乙
1
每次投籃投中的概率為 2,且各次投籃互不影響.
(1) 求甲獲勝的概率;
(2) 求投籃結(jié)束時甲的投球次數(shù) ξ 的分布列與期望.
解 設(shè) Ak , Bk 分別表示甲、乙在第 k 次投籃投中,則
1 1
P( A ) = 3, P( B ) = 2( k= 1,2,3) 11、.
k k
(1) 記“甲獲勝”為事件 C,由互斥事件有一個發(fā)生的概率與相互獨立事件同時發(fā)生的概率計算公式知
P( C) = P( A ) + P(
A B A ) + P( A
B A B A ) = P( A ) + P(
A ) P( B ) P( A ) +
1
1
1
2
1
1
2
2
3
1
1
1
2
(
) (
B
) (
A
) (
B
)
(
)
P A
P
P
P
P A 12、
1
1
2
2
3
1
2
1
1
2
2
1
2
1
= 3+ 3 2 3+ 3
2
3
1 1 1 13
= 3+ 9+ 27= 27.
(2) ξ 的所有可能值為 1,2,3 由獨立性,知
1
2
1
2
P( ξ =1) = P( A1) +P( A1
B1) = 3+ 13、3 2= 3,
P( ξ =2) = P( A1
B1 A2) +P( A1 B1 A2 B2)
2
1
1
2 2
1 2
2
= 3 2 3+ 3 2 = 9,
P( ξ =3) = P( A
B A B ) =
2 2
1 2
1
3
2
=
9.
1
1
2
2
綜上知, ξ 的分布列為
ξ
1
14、
2
3
P
2
2
1
3
9
9
2
2
1
13
從而 E( ξ ) =1 3+2 9+3 9= 9 ( 次 ) .
B 級 能力突破 ( 時間: 30 分鐘 滿分: 45 分 )
一、選擇題 ( 每小題 5 分,共 10 分 )
3
1.(2013 金華模擬
) 已知三個正態(tài)分布密度函數(shù)
φi 15、 ( x) =
1
x-μ
2
i
的圖象如圖所
e-
2
( x∈ R, i = 1,2,3)
2π σ i
2σ
i
示,則
( ) .
A. μ 1< μ2= μ 3, σ1=σ 2> σ 3
B. μ 1> μ2= μ 3, σ1=σ 2< σ 3
C. μ 1= μ2< μ 3, σ1<σ 2= σ 3
D. μ 1< μ2= μ 3, σ1=σ 2< σ 3
解析
正態(tài)分布密度函數(shù)
φ2( x) 和 φ 3( x) 的圖象都是關(guān)于同一條直線對稱,所以其平均 16、
數(shù)相同,故
μ 2= μ 3,又 φ2( x) 的對稱軸的橫坐標值比
φ 1( x) 的對稱軸的橫坐標值大,
故有 μ
1
<μ
= μ . 又 σ 越大,曲線越“矮胖”,
σ 越小,曲線越“瘦高”,由圖象可
2
3
知,正態(tài)分布密度函數(shù)
φ ( x) 和 φ ( x) 的圖象一樣“瘦高”,
φ
( x) 明顯“矮胖”,從
1
2
17、
3
而可知 σ 1= σ 2< σ 3.
答案
D
2.位于坐標原點的一個質(zhì)點
P 按下述規(guī)則移動:質(zhì)點每次移動一個單位;移動的方向為向
1
上或向右,并且向上、向右移動的概率都是
2. 質(zhì)點 P移動五次后位于點
( 18、2,3) 的概率是
(
) .
1 5
2
1 5
A.
2
B. C5 2
3
1 3
2
3
1 5
C. C
2
19、
D. C C
2
5
5
5
解析
由于質(zhì)點每次移動一個單位,
移動的方向為向上或向右,
移動五次后位于點 (2,3)
,
所以質(zhì)點 P 必須向右移動兩次,向上移動三次,故其概率為
3
1 3
1 2
3
1 5
2
1 5
,故選 B.
C
2
2
= C
2
20、
= C
2
5
5
5
答案
B
二、填空題 ( 每小題 5
分,共
10 分 )
1
3.(2013 湘潭二模 21、 ) 如果 X~B(20 , p) ,當 p= 2且 P( X= k) 取得最大值時, k=________.
解析
當
1
=
k 1 k
1
20 -k
k
1 20
,顯然當
k
= 10
時, ( =
) 取得
= 時, (
) = C20
= C20
p
2
P X
k
2
2
2
P X k
22、
最大值.
答案 10
4.(2013 九江一模 ) 將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的
4
入口處,小 1 球?qū)⒆杂上侣洌∏蛟谙侣涞倪^程中,將
3 次遇到黑色障礙物,最后落入
A 袋或 B 袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
1
2,則小
球落入 A 袋中的概率為 ________.
解析
記“小球落入
A 袋中”為事件 A,“小球落入 B 袋中”為事件 B,則事件 A 的對立
事件為
, 23、若小球落入
B
袋中,則小球必須一直向左落下或一直向右落下,故
( ) =
1
B
P B
2
3
1 3
1
1
3
+
2 = 4,從而 P( A) = 1- P( B) = 1- 4=4.
答案
3
4
三、解答題 ( 共 25 分)
5.(12 分)(2012 湖南 ) 某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機
收集了在該超市購物的
100 位顧客的相關(guān)數(shù)據(jù),如下表所示. 24、
一次購物量
1 至 4 件 5 至 8 件
9 至 12
13 至 16
17 件及
件
件
以上
顧客數(shù) ( 人 )
x
30
25
y
10
結(jié)算時間 ( 分鐘 / 人)
1
1.5
2
2.5
3
已知這 100 位顧客中一次購物量超過
8 件的顧客占 55 %.
(1) 確定 x, y 的值,并求顧客一次購物的結(jié)算時間
X的分布列與數(shù)學期望;
(2) 若某顧客到達收銀臺時前面恰有 2 位顧客需結(jié)算, 且各顧客的結(jié)算相互獨立, 求該顧客結(jié)算前的等候時 25、間不超過 2.5 分鐘的概率. ( 注:將頻率視為概率 )
解 (1) 由已知得 25+ y+10= 55,x+ 30= 45,所以 x=15,y= 20. 該超市所有顧客一次
購物的結(jié)算時間組成一個總體,所收集的 100 位顧客一次購物的結(jié)算時間可視為總體的
一個容量為 100 的簡單隨機樣本,將頻率視為概率得
15 3 30 3 25 1 20 1
P( X= 1) = 100=20,P( X= 1.5) = 100=10,P( X= 2) = 100= 4,P( X= 2.5) = 100= 5,P( X
10 1
= 3) =100= 10.
26、
X 的分布列為
X
1
1.5
2
2.5
3
P
3
3
1
1
1
20
10
4
5
10
X 的數(shù)學期望為
3 3 1 1 1
E( X) =1 20+1.5 10+2 4+2.5 5+3 10= 1.9.
5
(2) 記 A 為事件“該顧客結(jié)算前的等候時間不超過 2.5 分鐘”, Xi ( i = 1,2) 為該顧客前面
第 i 位顧客的結(jié)算時間,則
P( A) =P( X1= 1 且 X2= 1) + P( X1= 1 且 X2= 1.5) + P 27、( X1= 1.5 且 X2=1) .
由于各顧客的結(jié)算相互獨立,且 X1, X2 的分布列都與 X的分布列相同,所以
P( A) =P( X1=1) P( X2= 1) +P( X1=1) P( X2= 1.5) + P( X1=1.5) P( X2= 1)
= 3 3 + 3 3 + 3 3 = 9 . 20 20 20 10 10 20 80
9
故該顧客結(jié)算前的等候時間不超過
2.5 分鐘的概率為
80.
6. (13 分)(2012 山東 ) 現(xiàn)有甲、乙兩個靶,某射手向甲靶射擊一次,命中的概率為
3
28、
,命
4
2
中得 1 分,沒有命中得 0 分;向乙靶射擊兩次,每次命中的概率為
3,每命中一次得 2
分,沒有命中得 0 分.該射手每次射擊的結(jié)果相互獨立.
假設(shè)該射手完成以上三次射擊.
(1) 求該射手恰好命中一次的概率;
(2) 求該射手的總得分 X 的分布列及數(shù)學期望 E( X) .
解 (1) 記:“該射手恰好命中一次”為事件 A,“該射手射擊甲靶命中”為事件 B,“該
射手第一次射擊乙靶命中”為事件 C,“該射手第二次射擊乙靶命中”為事件 D.
3 2
由題意,知 29、P( B) = 4, P( C) = P( D) =3,
- -
- -
- -
由于 A= B C D+ B CD+ B CD,
根據(jù)事件的獨立性和互斥性,得
( ) = (
- -+- -
+ - - )
P A P BC
D
B CD
B
CD
- -
+ P(
- -
- -
= P( BC D)
B CD)
+ P(
B CD)
= 30、P( B) P(
-
-
-
-
-
-
P( D)
C)
P( D
) + P( B
) P( C) P( D)
+ P(
B
) P( C)
3
2
2
3
2
2
3
2
2
= 4 1- 3 1- 3 + 1-4 3 1-3 + 1- 4 1-3 3
7
= 36.
(2) 根據(jù)題意,知 X 的所有可能取值為 0,1,2,3,4,5. 根據(jù)事件的獨立性和互斥性,得
- - -
P( X= 0) = P( B C D)
= [1 - ( )][1
31、- ( )][1
- (
)]
P B
P C
P D
3
2
2
1
= 1- 4 1- 3 1- 3 =36;
6
- - - -
P( X= 1) = P( B C D) = P( B) P( C) P( D)
3 2 2 1
= 4 1- 3 1- 3 = 12;
-
-
- -
-
-
- -
P( X= 2) = P( B CD+ B C D) = P( B CD)
+ P( B CD)
3
2
2
3
2
2
1
= 32、1- 1- + 1- 1- = ;
4
3
3
4
3
3
9
-
-
-
-
P( X= 3) = P( BCD
+ B CD) = P( BCD) +P( B CD)
3
2
2
3
2
2
1
= 4 3 1- 3 +4 1- 3 3= 3;
-
3
2 2 1
P( X= 4) = P( B CD)
=
1- 4 3 3= 9,
( = 5) = (
) = 3 22= 1.
P X
P BCD
4
3
33、3
3
故 X 的分布列為
X
0
1
2
3
4
5
P
1
1
1
1
1
1
36
12
9
3
9
3
1
1
1
1
1
1
41
所以 E( X) =0 36+1 12+2 9+3 3+4 9+5 3=12.
特別提醒: 教師配贈習題、課件、視頻、圖片、文檔等各種電子資源見《創(chuàng)新設(shè)計高考
總復習》光盤中內(nèi)容 .
7
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報獎勵制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責
- 物業(yè)管理制度:節(jié)前工作重點總結(jié)
- 物業(yè)管理:某小區(qū)消防演習方案
- 某物業(yè)公司客服部工作職責