基本不等式(經典)

上傳人:san****019 文檔編號:22550177 上傳時間:2021-05-28 格式:PPT 頁數:29 大?。?.01MB
收藏 版權申訴 舉報 下載
基本不等式(經典)_第1頁
第1頁 / 共29頁
基本不等式(經典)_第2頁
第2頁 / 共29頁
基本不等式(經典)_第3頁
第3頁 / 共29頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《基本不等式(經典)》由會員分享,可在線閱讀,更多相關《基本不等式(經典)(29頁珍藏版)》請在裝配圖網上搜索。

1、3.4基 本 不 等 式 : 2a bab 2002年 國 際 數 學 大 會( ICM-2002) 在 北 京 召 開 , 此屆 大 會 紀 念 封 上 的 會 標 圖 案 , 其中 央 正 是 經 過 藝 術 處 理 的 “ 弦圖 ” 。 它 標 志 著 中 國 古 代 的 數 學 成就 , 又 像 一 只 轉 動 著 的 風 車 , 歡迎 來 自 世 界 各 地 的 數 學 家 。 一 、 問 題 引 入 情景設置 2 2+a ba b 新 課 探 究 2 2a b 2ab2 22S abS a b 四 個 三 角 形大 正 方 形 =a b特 別 地 , 當 時 又 有 怎 樣 的 結

2、 論 ?a b2 2+ =2a b ab新 課 探 究 一 般 地 , 對 于 任 意 實 數 , 我 們 有 ,a b2 2 2a b ab 當 且 僅 當 時 等 號 成 立a b思 考 : 如 何 證 明 ? 2 2 22 2 2 ( ) 02a b ab a ba b ab 證 明 :當 且 僅 當 時 , 此 時a b 2( ) 0a b 2 2 2a b ab a b a ba b a b 0, 0, 2a b a b aba b 若 則當 且 僅 當 時 取 等 號 2a bab 22a bab 0, 0 2a b a b aba b 當 時 ,當 且 僅 當 時 等 號 成 立

3、變 形 式 : 平 方 當 且 僅 當 a=b時 , 取 “ =”號 0, 02a bab a b ( )能 否 用 不 等 式 的 性 質 進 行 證 明 ?小 組 合 作 : 2 2 _ _ 0 0 a b aba ba b 要 證 :只 要 證 :只 要 證 :只 要 證 : ( _-_)顯 然 上 式 成 立 . 2 ab2 aba b 在 右 圖 中 , AB是 圓 的 直 徑 ,點 C是 AB上 的 一 點 ,設 AC = a , BC = b 。過 點 C作 垂 直 于 AB的 弦 DE,連 接 AD、 BD。Rt RtACD DCB 三 角 形 三 角 形與 相 似基 本 不

4、等 式 的 幾 何 意 義 是 : “ 半 徑 不 小 于 半 弦 。 ” 2a b ab E( )a b 當 且 僅 當 時 , 取 號a CDCD b 2CD ab CD ab P98探 究 2.代 數 意 義 : 幾 何 平 均 數 小 于 等 于 算 術 平 均 數2.代 數 證 明 :3.幾 何 意 義 : 半 弦 長 小 于 等 于 半 徑( 0, 0)2a bab a b ( 當 且 僅 當 a=b時 , 等 號 成 立 )二、新課講解算 術 平 均 數幾 何 平 均 數3.幾 何 證 明 :從 數 列 角 度 看 :兩 個 正 數 的 等 比 中 項 小 于 等 于 它 們 的

5、等 差 中 項1.思 考 :如 果 當 用 去 替 換 中 的 ,能 得 到 什 么 結 論 ? 0,0 ba ,a b2 2 2a b a b ba, 基 本 不 等 式 基 本 不 等 式 : 當 且 僅 當 a =b時 , 等 號 成 立 .當 且 僅 當 a=b時 , 等 號 成 立 .2 2 2 (a b ab a R 、 b )重 要 不 等 式 : ( 0, 0)2a bab a b 注 意 :( 1) 不 同 點 : 兩 個 不 等 式 的 適 用 范 圍 不 同 。( 2) 相 同 點 : 當 且 僅 當 a=b時 , 等 號 成 立 。 2 2R 2( )a b a b a

6、ba b 如 果 , , 那 么當 且 僅 當 時 , 取 號1.重 要 不 等 式0 0 2( )a ba b aba b 如 果 , , 那 么當 且 僅 當 時 , 取 號2.基 本 不 等 式 ( 均 值 定 理 )基本不等式成立的要素:2a b ab ( )( 1) : 看 是 否 均 為 正 數 ( 2) : 看 不 等 號 的 方 向( 3) : 看 等 號 是 否 能 取 到簡 言 之 : 一 正 二 定 三 相 等 當 且 僅 當 a b 時 等 號 成 立當 且 僅 當 a b 時 等 號 成 立(a0,b0)2a bab 2 ( 0, 0)a b ab a b 2 2 2

7、a b ab 0, 02a bab a b 2( )結 論 1: 兩 個 正 數 積 為 定 值 , 則 和 有 最 小 值結 論 2: 兩 個 正 數 和 為 定 值 , 則 積 有 最 大 值 已 知 x 1,求 x 的 最 小 值 以 及 取 得 最 小 值 時 x的 值 。 11x解 : x 1 x 1 0 x ( x 1) 1 2 1 311x )1( 1x )1( 1)1( xx當 且 僅 當 x 1 時 取 “ ” 號 .于 是 x 2或 者 x 0( 舍 去 )11x答 : 最 小 值 是 3, 取 得 最 小 值 時 x的 值 為 2例 1: 構 造 積 為 定 值通 過 加

8、 減 項 的 方 法 配 湊成 基 本 不 等 式 的 形 式 .例 題 講 解 例 2 ( 1) 用 籬 笆 圍 一 個 面 積 為 100 的 矩 形 菜 園 , 問 這個 矩 形 的 長 寬 各 為 多 少 時 , 所 用 籬 笆 最 短 ? 最 短 的 籬 笆是 多 少 ? 2m, ,xm ym解 : 設 矩 形 菜 園 的 長 為 寬 為 2 10022( ) 40 x y xy x yx y 由 可 得 :100, 2( )xy x y m 則 籬 笆 的 長 為x y等 號 當 且 僅 當 時 成 立 , 10 x y 此 時 因 此 這 個 矩 形 的 長 、 寬 都 為 10

9、m時 ,所 用 籬 笆 最 短 , 最 短 籬 笆 是 40m. ( 2) 用 一 段 長 為 36m的 籬 笆 圍 成 一 個 矩 形 菜 園 , 問 這個 矩 形 的 長 寬 各 為 多 少 時 , 菜 園 面 積 最 大 ? 最 大 面 積 是 多 少 ?, ,xm ym解 : 設 矩 形 菜 園 的 長 為 寬 為2( ) 36 18,x y x y 則 182 2x yxy = =9 2xym矩 形 菜 園 的 面 積 為 S=x y當 且 僅 當 時 等 號 成 立 , 2.這 個 矩 形 的 長 、 寬 都 為 9m時 ,菜 園 面 積 最 大 , 最 大 面 積 是 81m81

10、xy 解 法 一 : (2)設 矩 形 菜 園 的 寬 為 xm, 則 長 為 (36-2x)m, 其 中 0 x 18 ,解 法 二 : 其 面 積 為 : )236(221)236( xxxxS .162836)2 2362(21 22 xx當 且 僅 當 2x=36-2x, 即 x=9時 菜 園 面 積 最 大 ,即 菜 園 長 18m , 寬 為 9 m 時 菜 園 面 積 最 大 為 162 m 2. 解 : 【 例 3】 某 工 廠 要 建 造 一 個 長 方 體 無 蓋 貯 水 池 , 其 容 積 為 4800m3,深 為 3m, 如 果 池 底 每 1m2的 造 價 為 150

11、元 , 池 壁 每 1m2的 造 價 為120元 , 問 怎 樣 設 計 水 池 能 使 總 造 價 最 低 , 最 低 總 造 價 是 多 少 元 ? 設 水 池 底 面 一 邊 的 長 度 為 xm, 則 水 池 的 寬 為 ,水 池 的總 造 價 為 y元 , 根 據 題 意 , 得 x16004800 1600150 120(2 3 2 3 )3y x x 1600240000 720( )x x xx 16002720240000 .297600402720240000 1600, 40 , 2976000.x x yx 即 時 有 最 小 值 因 此 , 當 水 池 的 底 面 是

12、 邊 長 為 40m的 正 方 形 時 , 水 池的 總 造 價 最 低 , 最 低 總 造 價 是 297600元 ;1,0)1(1的最值求已知:例xxx .21xx1x 2121:時原式有最小值即當且僅當解 xxxx ;1,0)2(的最值求已知xxx 有最值,并求其最值。為何值時,函數當函數若xxxyx ,31,3)3( 結 論 1: 兩 個 正 數 積 為 定 值 , 則 和 有 最 小 值 5331)3(2 33-x1)3-x(31y 3x:3 xxxx、解。最大值為時,函數有最大值,即當且僅當5 4,313 xxx .21xx1x 2)1()(2)x1()x(1:2 時有最大值即當且

13、僅當、解xxxx ,41,4112 1,0,0 xyxyyxxy yxyx解 124929291 xyyx例 3 已 知 x0,y0,且 x+y=1 求 的 最 小 值 yx 91例 題 講 解 (1)基 本 不 等 式 取 等 號的 條 件(2) “1”的 代 換 在 不 等式 中 的 應 用 12時 , 有 最 小 值當 且 僅 當 yx 正 確 ?錯 趙 老 師 花 10萬 元 購 買 了 一 輛 家 用 汽 車 ,如果 每 年 使 用 的 保 險 費 ,養(yǎng) 路 費 ,汽 油 費 約 為0.9萬 元 ,年 維 修 費 第 一 年 是 0.2萬 元 ,以 后逐 年 遞 增 0.2萬 .則

14、這 種 汽 車 使 用 多 少 年 時 ,它 的 年 平 均 費 用 最 少 ? 綜 合 應 用分 析 : “年 平 均 費 用 ” 的 含 義 ? 解 : 設 使 用 x年 后 , 年 平 均 費 用 為 y萬 元 , 則xxxxxy 102.02 )1(2.09.0 xxx 101.0 2 1101.0 xx 110 x100.1x20.1 有 最 小 值時 ,當 且 僅 當 yxx即 當 x=10時 , y有 最 小 值 3萬 元答 : 使 用 10年 后 , 年 平 均 費 用 最 少 。 ( , ) 3 2 03 27 1x yx y x yy 當 點 在 直 線 上 移 動 時 , 求的 最 小 值 . 33 33 3 33 27 1 11 2 3 12 3 1 73 3 311 732 3 3, x yx yx y x yx yy x yx y 解 :當 且 僅 當 = 即 時 取 得 等 號此 時 最 小 值 為 變式訓練 知 識 要 點 : 基 本 不 等 式 的 條 件 : 結 構 特 征 : 思 想 方 法 技 巧 :( 1) 數 形 結 合 思 想 ( 2) 換 元 法課堂總結一 正 、 二 定 、 三 相 等和 、 積.理 解 均 值 不 等 式 的 關 系 : 2 22若 , ,則 2 2ab a b a ba b R aba b

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!