中考數(shù)學(xué)復(fù)習(xí)專題函數(shù)

上傳人:無*** 文檔編號(hào):24355832 上傳時(shí)間:2021-06-28 格式:DOC 頁數(shù):10 大?。?19.62KB
收藏 版權(quán)申訴 舉報(bào) 下載
中考數(shù)學(xué)復(fù)習(xí)專題函數(shù)_第1頁
第1頁 / 共10頁
中考數(shù)學(xué)復(fù)習(xí)專題函數(shù)_第2頁
第2頁 / 共10頁
中考數(shù)學(xué)復(fù)習(xí)專題函數(shù)_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《中考數(shù)學(xué)復(fù)習(xí)專題函數(shù)》由會(huì)員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)復(fù)習(xí)專題函數(shù)(10頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 中考數(shù)學(xué)復(fù)習(xí)專題 函數(shù) 考點(diǎn)一、平面直角坐標(biāo)系 1、平面直角坐標(biāo)系 在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。 其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。 為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。 注意:x軸和y軸上的點(diǎn),不屬于任何象限。 2、點(diǎn)的坐標(biāo)的概念 點(diǎn)的坐標(biāo)用(a,b)

2、表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。 考點(diǎn)二、不同位置的點(diǎn)的坐標(biāo)的特征 1、各象限內(nèi)點(diǎn)的坐標(biāo)的特征 點(diǎn)P(x,y)在第一象限 點(diǎn)P(x,y)在第二象限 點(diǎn)P(x,y)在第三象限 點(diǎn)P(x,y)在第四象限 2、坐標(biāo)軸上的點(diǎn)的特征 點(diǎn)P(x,y)在x軸上,x為任意實(shí)數(shù) 點(diǎn)P(x,y)在y軸上,y為任意實(shí)數(shù) 點(diǎn)P(x,y)既在x軸上,又在y軸上x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0) 3、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征 點(diǎn)P(x,

3、y)在第一、三象限夾角平分線上x與y相等 點(diǎn)P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù) 4、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征 位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。 位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。 5、關(guān)于x軸、y軸或遠(yuǎn)點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征 點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù) 點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù) 點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱橫、縱坐標(biāo)均互為相反數(shù) 6、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離 點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離: (1)點(diǎn)P(x,y)到x軸的距離等于 (2)點(diǎn)P(x,y)到y(tǒng)軸的距

4、離等于 (3)點(diǎn)P(x,y)到原點(diǎn)的距離等于 考點(diǎn)三、函數(shù)及其相關(guān)概念 1、變量與常量 在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。 一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。 2、函數(shù)解析式 用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。 使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。 3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn) (1)解析法 兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析

5、法。 (2)列表法 把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。 (3)圖像法 用圖像表示函數(shù)關(guān)系的方法叫做圖像法。 4、由函數(shù)解析式畫其圖像的一般步驟 (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值 (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn) (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。 考點(diǎn)四、正比例函數(shù)和一次函數(shù) 1、正比例函數(shù)和一次函數(shù)的概念 一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。 特別地,當(dāng)一次函數(shù)中的b為0時(shí),(k為常數(shù),k0)。這時(shí),y叫

6、做x的正比例函數(shù)。 2、一次函數(shù)的圖像 所有一次函數(shù)的圖像都是一條直線 3、一次函數(shù)、正比例函數(shù)圖像的主要特征: 一次函數(shù)的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(diǎn)(0,0)的直線。 k的符號(hào) b的符號(hào) 函數(shù)圖像 圖像特征 k>0 b>0 y o x 圖像經(jīng)過一、二、三象限,y隨x的增大而增大。 b<0 y 0 x 圖

7、像經(jīng)過一、三、四象限,y隨x的增大而增大。 K<0 b>0 y 0 x 圖像經(jīng)過一、二、四象限,y隨x的增大而減小 b<0 y o x 圖像經(jīng)過二、三、四象限,y隨x的增大而減小。 注:當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。 4、正比例函數(shù)的性質(zhì) 一般地,正比例函數(shù)有下列性質(zhì): (1)當(dāng)k>0時(shí),圖像經(jīng)過第一、三象限,y隨x的增大而增大; (2)當(dāng)k<0時(shí),

8、圖像經(jīng)過第二、四象限,y隨x的增大而減小。 5、一次函數(shù)的性質(zhì) 一般地,一次函數(shù)有下列性質(zhì): (1)當(dāng)k>0時(shí),y隨x的增大而增大 (2)當(dāng)k<0時(shí),y隨x的增大而減小 6、正比例函數(shù)和一次函數(shù)解析式的確定 確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。 考點(diǎn)五、反比例函數(shù) 1、反比例函數(shù)的概念 一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)

9、。 2、反比例函數(shù)的圖像 反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。 3、反比例函數(shù)的性質(zhì) 反比例函數(shù) k的符號(hào) k>0 k<0 圖像 y o x y o x

10、 性質(zhì) ①x的取值范圍是x0,y的取值范圍是y0; ②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限。在每個(gè)象限內(nèi),y隨x 的增大而減小。 ①x的取值范圍是x0, y的取值范圍是y0; ②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別在第二、四象限。在每個(gè)象限內(nèi),y隨x 的增大而增大。 4、反比例函數(shù)解析式的確定 確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。 5、反比例函數(shù)中反比例系數(shù)的幾何意義 過反比例函數(shù)圖像上任一點(diǎn)P作x軸、y軸的垂線

11、PM,PN,則所得的矩形PMON的面積S=PMPN=。 。 考點(diǎn)六 二次函數(shù) 1、二次函數(shù)的概念 一般地,如果,那么y叫做x 的二次函數(shù)。 叫做二次函數(shù)的一般式。 2、二次函數(shù)的圖像 二次函數(shù)的圖像是一條關(guān)于對(duì)稱的曲線,這條曲線叫拋物線。 拋物線的主要特征: ①有開口方向;②有對(duì)稱軸;③有頂點(diǎn)。 3、二次函數(shù)圖像的畫法 五點(diǎn)法: (1)先根據(jù)函數(shù)解析式,求出頂點(diǎn)坐標(biāo),在平面直角坐標(biāo)系中描出頂點(diǎn)M,并用虛線畫出對(duì)稱軸 (2)求拋物線與坐標(biāo)軸的交點(diǎn): 當(dāng)拋物線與x軸有兩個(gè)交點(diǎn)時(shí),描出這兩個(gè)交點(diǎn)A,B及拋物線與y軸的交點(diǎn)C,再找到點(diǎn)C的對(duì)稱點(diǎn)D。將這

12、五個(gè)點(diǎn)按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數(shù)的圖像。 當(dāng)拋物線與x軸只有一個(gè)交點(diǎn)或無交點(diǎn)時(shí),描出拋物線與y軸的交點(diǎn)C及對(duì)稱點(diǎn)D。由C、M、D三點(diǎn)可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對(duì)對(duì)稱點(diǎn)A、B,然后順次連接五點(diǎn),畫出二次函數(shù)的圖像。 4、二次函數(shù)的解析式有三種形式: (1)一般式: (2)頂點(diǎn)式: (3)當(dāng)拋物線與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次好方程有實(shí)根和存在時(shí),根據(jù)二次三項(xiàng)式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點(diǎn),則不能這樣表示。 5、二次函數(shù)的最值 如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或

13、最小值),即當(dāng)時(shí),。 如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時(shí),;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時(shí),,當(dāng)時(shí),;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時(shí),,當(dāng)時(shí),。 6、二次函數(shù)的性質(zhì) 函數(shù) 二次函數(shù) 圖像 a>0 a<0 y x o o x y 性質(zhì) (1)拋物線開口向上,并向上無限延伸; (2)對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,); (3)在對(duì)稱軸

14、的左側(cè),即當(dāng)x<時(shí),y隨x的增大而減??;在對(duì)稱軸的右側(cè),即當(dāng)x>時(shí),y隨x的增大而增大,簡(jiǎn)記左減右增; (4)拋物線有最低點(diǎn),當(dāng)x=時(shí),y有最小值, (1)拋物線開口向下,并向下無限延伸; (2)對(duì)稱軸是x=,頂點(diǎn)坐標(biāo)是(,); (3)在對(duì)稱軸的左側(cè),即當(dāng)x<時(shí),y隨x的增大而增大;在對(duì)稱軸的右側(cè),即當(dāng)x>時(shí),y隨x的增大而減小,簡(jiǎn)記左增右減; (4)拋物線有最高點(diǎn),當(dāng)x=時(shí),y有最大值, 2、二次函數(shù)中,的含義: 表示開口方向:>0時(shí),拋物線開口向上 <0時(shí),拋物線開口向下 與對(duì)稱軸有關(guān):對(duì)稱軸為x= 表示拋物線與y軸的交點(diǎn)坐標(biāo):(

15、0,) 3、二次函數(shù)與一元二次方程的關(guān)系 一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo)。 因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn)。 當(dāng)>0時(shí),圖像與x軸有兩個(gè)交點(diǎn); 當(dāng)=0時(shí),圖像與x軸有一個(gè)交點(diǎn); 當(dāng)<0時(shí),圖像與x軸沒有交點(diǎn)。 補(bǔ)充: 1、兩點(diǎn)間距離公式(當(dāng)遇到?jīng)]有思路的題時(shí),可用此方法拓展思路,以尋求解題方法) 如:點(diǎn)A坐標(biāo)為(x,y)點(diǎn)B坐標(biāo)為(x,y) 則AB間的距離,即線段AB的長度為 2、函數(shù)平移規(guī)律(中考試題中,一般占3分,但掌握這個(gè)知識(shí)點(diǎn),對(duì)提高答題速度有很大幫助,可以大大節(jié)省做題的時(shí)間) 左加右減、上加下減

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!