2019-2020年高中數(shù)學 概念綜合課時作業(yè) 北師大版選修2-3.doc
《2019-2020年高中數(shù)學 概念綜合課時作業(yè) 北師大版選修2-3.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 概念綜合課時作業(yè) 北師大版選修2-3.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 概念綜合課時作業(yè) 北師大版選修2-3 一、選擇題 1.20件產(chǎn)品中有5件次品,從中任取兩件,可為隨機變量的是( ) A.取到產(chǎn)品的件數(shù) B.取到次品的件數(shù) C.取到正品的概率 D.取到次品的概率 [答案] B [解析] 對于A,取到產(chǎn)品的件數(shù)為常數(shù)5,故它不是隨機變量;同理,取到正品和次品的概率均為常數(shù),不是隨機變量,故C、D均不是隨機變量;對于B,取到次品的件數(shù)可能是0,1,2,其結果可以用一個變量表示,且該試驗是隨機試驗,因此,它是隨機變量. 2.①某機場侯機室中一天的游客數(shù)量為X;②某手機一天內接到的電話次數(shù)為X;③某水文站觀察到一天中長江的水位為X;④某路口一天經(jīng)過的車輛數(shù)為X.其中不是離散型隨機變量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析]?、?、②、④中的隨機變量X取的值,我們都可以按一定次序一一列出,因此它們都是離散型隨機變量;③中的X可以取某一區(qū)間內的一切值,無法按一定次序一一列出,故X不是離散型隨機變量. 3.下列四個表中,能表示隨機變量X的分布列的是( ) A. X 0 1 P 0.3 0.9 X 0 1 2 P 0.15 0.65 0.20 C. X 0 1 2 … n-1 P … D. X 0 1 2 3 P - [答案] B [解析] 點A中,概率之和=0.3+0.9=1.2>1,不符合性質(2);在C中,概率之和=+++…+=1-<1,不符合性質(2);在D中,P(X=1)=-,不符合性質(1);只有選項B同時符合隨機變量的分布列的兩條性質. 4.12個形狀大小一致的球中,有3個黑球,9個白球,現(xiàn)從中隨機地取出4個球,則取到的黑球個數(shù)X的分布列是( ) A.P(X=r)=,r=1,2,3 B.P(X=r)=,r=0,1,2,3,4 C.P(X=r)=,r=0,1,2,3 D.P(X=r)=,r=0,1,2,3 [答案] C [解析] 由題設可知,X服從參數(shù)為12,3,4的超幾何分布, 對照超幾何分布的定義可知X的分布列為P(X=r)=,r=0,1,2,3,故選C. 5.某班學生考試成績中,數(shù)學不及格的占15%,語文不及格的占5%,兩門都不及格的占3%,已知一學生數(shù)學不及格,則他語言也不及格的概率是( ) A.0.2 B.0.33 C.0.5 D.0.6 [答案] A [解析] 設事件A=“數(shù)學不及格”,B=“語文不及格”, 則P(A)=0.15,P(AB)=0.03,所求的概率是: P(B|A)===0.2. 二、填空題 6.設隨機變量X~B(2,p),隨機變量Y~B(3,p),若P(X≥1)=,則P(X≥1)=________. [答案] [解析] 先求出p. ∵P(X≥1)=1-P(X=0)=1-(1-p)2=?p=, ∴P(Y≥1)=1-P(Y=0)=1-(1-p)3=. 7.袋中有4只紅球和3只黑球,從中任取4只球,取到一只紅球得1分,取到一只黑球得3分,設得分為隨機變量X,則P(X≤6)=________. [答案] [解析] 可能的情形為:4紅,3紅1黑,2紅2黑,1紅3黑,對應的得分依次是4分,6分,8分,10分. P(X≤6)=P(X=4)+P(X=6)=+=+=. 8.甲、乙兩個袋中均裝有紅、白兩種顏色的小球,這些小球除顏色外完全相同.其中甲袋裝有4個紅球、2個白球,乙袋裝有1個紅球、5個白球.現(xiàn)分別從甲、乙兩袋中各隨機取出一個球,則取出的兩球都是紅球的概率為________.(答案用分數(shù)表示) [答案] [解析] 從甲袋中任取一球恰好是紅球的概率為=,從乙袋中任取一球恰好是紅球的概率為=,所以分別從甲、乙兩袋中各隨機取出一個球,取出的兩球都是紅球的概率為=. 三、解答題 9.一袋中裝有6個同樣大小的黑球,編號為1、2、3、4、5、6,現(xiàn)從中隨機取出3個球,以X表示取出球的最大號碼. (1)求X的分布列. (2)求X的取值不小于4的概率. [解析] (1)隨機變量X的取值為3,4,5,6. P(X=3)==,P(X=4)==, P(X=5)==,P(X=6)==. ∴隨機變量X的分布列為: X 3 4 5 6 P (2)X的取值不小于4的概率為 P(X≥4)=P(X=4)+P(X=5)+P(X=6)=++=. 10.為振興旅游業(yè),xx年面向國內發(fā)行了總量為2 000萬張的優(yōu)惠卡,其中向省外人士發(fā)行的是金卡,向省內人士發(fā)行的是銀卡.某旅游公司組織了一個有36名游客的旅游團到該省旅游,其中是省外游客,其余是省內游客.在省外游客中有持金卡,在省內游客中有持銀卡. (1)在該團中隨機采訪3名游客,求至少有1人持金卡且恰有1人持銀卡的概率; (2)在該團的省外游客中隨機采訪3名游客,設其中持金卡人數(shù)為隨機變量X,求X的分布列. [解析] (1)由題意知,省外游客有27人,其中9人持有金卡,省內游客有9人,其中6人持有銀卡. 記事件B為“采訪該團3人中,至少有1人持金卡且恰有1人持銀卡”, 記事件A1為“采訪該團3人中,1人持金卡,1人持銀卡”, 記事件A2為“采訪該團3人中,2人持金卡,1人持銀卡”. 則P(B)=P(A1)+P(A2)=+=. 所以在該團中隨機采訪3名游客,至少有1人持金卡且恰有1人持銀卡的概率為. (2)X的可能取值為0、1、2、3. 因為P(X=0)==,P(X=1)==, P(X=2)==,P(X=3)==. 所以X的分布列為 X 0 1 2 3 P 一、選擇題 1.一個口袋內有7個白球、3個黑球,作有放回抽樣,連摸2次,每次任意摸出1球,則2次摸出的球為一白一黑的概率是( ) A.2 B.+ C.2 D.+ [答案] A [解析] 這里是有放回抽樣,摸2次球可看作是2次獨立重復試驗.事件“2次摸出的球為一白一黑”可理解為“2次試驗中取到白球恰好發(fā)生1次”,因此,所求的概率為C. 2.某次高三教學質量檢測中,甲、乙、丙三科考試成績如下圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如下圖曲線可得下列說法中正確的一個是( ) A.甲科總體的標準差最小 B.丙科總體的平均數(shù)最小 C.乙科總體的標準差及平均數(shù)都居中 D.甲、乙、丙的總體的平均數(shù)不相同 [答案] A [解析] 由圖像可知三科總體的平均數(shù)(均值)相等,由正態(tài)密度曲線的性質可知:σ越大,正態(tài)曲線越扁平,σ越小,正態(tài)曲線越尖陡,故三科總體的標準差從小到大依次為甲、乙、丙.選A. 3.某市統(tǒng)考成績大體上反映了全市學生的成績狀況,因此可以把統(tǒng)考成績作為總體,設平均成績μ=480,標準差σ=100,總體服從正態(tài)分布,若全市錄取率為40%,那么錄取分數(shù)線可能劃在(已知Φ(0.25)=0.6)( ) A.525分 B.515分 C.505分 D.495分 [答案] C [解析] 根據(jù)正態(tài)分布的意義解決.1-Φ()=1-Φ(0.25)=0.4,所以t=505. 4.拋擲兩個骰子,至少有一個4點或5點出現(xiàn)時,就說這些試驗成功,則在10次試驗中,成功次數(shù)X的期望是( ) A. B. C. D. [答案] D [解析] 記“至少有一個4點或5點出現(xiàn)”為事件A,則事件為“沒有一個4點、5點出現(xiàn)”, ∵P()===, ∴P(A)=1-P()=. 顯然成功次數(shù)X~B(10,), 因此EX=10=. 二、填空題 5.某班40人隨機平均分成兩組,兩組學生一次考試成績的統(tǒng)計如下: 統(tǒng)計量 組別 平均分 方差 第一組 80 16 第二組 90 36 則全班的平均分為________,方差為________. [答案] 85 51 [解析] 平均分為:(2080+2090)=85(分),第一組分數(shù)的方差:s=[x+x+…+x-20802],所以,x+x+…+x=1620+20802,同理,x+x+…+x=3620+20902,所以,s2=[(x+x+…+x)-40852]=51. 6.對某種產(chǎn)品的6件不同正品和4件不同次品一一進行測試,到區(qū)分出所有次品為止.若所有次品恰好在第五次測試被全部發(fā)現(xiàn),則這樣的測試方法有________種.(以數(shù)字作答) [答案] 576 [解析] 由于第五次恰好將所有的4件不同次品全部發(fā)現(xiàn),說明第五次所測試的一定是最后一個次品.故這樣的測試方法一共有n=CCA=46432=576. 三、解答題 7.(xx重慶理,17)端午節(jié)吃粽子是我國的傳統(tǒng)習俗.設一盤中裝有10個粽子,其中豆沙粽2個、肉粽3個、白粽5個,這三種粽子的外觀完全相同.從中任意選取3個. (1)求三種粽子各取到1個的概率; (2)設X表示取到的豆沙粽個數(shù),求X的分布列與數(shù)學期望. [解析] (1)令A表示事件“三種粽子各取到1個”,由古典概型的概率計算公式有 P(A)==. (2)X的可能取值為0、1、2,且 P(X=0)==, P(X=1)==, P(X=2)== 綜上知,X的分布列為: X 0 1 2 P 故E(X)=0+1+2=(個) 8.(xx四川理,17)某市A、B兩所中學的學生組隊參加辯論賽,A中學推薦了3名男生、2名女生,B中學推薦了3名男生、4名女生,兩校所推薦的學生一起參加集訓.由于集訓后隊員水平相當,從參加集訓的男生中隨機抽取3人、女生中隨機抽取3人組成代表隊. (1)求A中學至少有1名學生入選代表隊的概率; (2)某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽.設X表示參賽的男生人數(shù),求X的分布列和數(shù)學期望. [解析] (1)由題意,參加集訓的男、女生各有6名. 參賽學生全從B中抽取(等價于A中沒有學生入選代表隊)的概率為=. 因此,A中學至少1名學生入選的概率為1-=. (2)根據(jù)題意,X的可能取值為1,2,3. P(X=1)==, P(X=2)==, P(X=3)==, 所以X的分布列為: X 1 2 3 P 因此,X的期望為E(X)=1+2+3=2.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 概念綜合課時作業(yè) 北師大版選修2-3 2019 2020 年高 數(shù)學 概念 綜合 課時 作業(yè) 北師大 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://kudomayuko.com/p-2612401.html