2019-2020年七年級數(shù)學(xué)下冊 12.3《運用公式法》教案 魯教版.doc
-
資源ID:3325471
資源大?。?span id="2j11axu" class="font-tahoma">36.50KB
全文頁數(shù):7頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
2019-2020年七年級數(shù)學(xué)下冊 12.3《運用公式法》教案 魯教版.doc
2019-2020年七年級數(shù)學(xué)下冊 12.3《運用公式法》教案 魯教版
●教學(xué)目標
(一)教學(xué)知識點
1.使學(xué)生了解運用公式法分解因式的意義;
2.使學(xué)生掌握用平方差公式分解因式.
3.使學(xué)生了解,提公因式法是分解因式的首先考慮的方法,再考慮用平方差公式分解因式.
(二)能力訓(xùn)練要求
1.通過對平方差公式特點的辨析,培養(yǎng)學(xué)生的觀察能力.
2.訓(xùn)練學(xué)生對平方差公式的運用能力.
(三)情感與價值觀要求
在引導(dǎo)學(xué)生逆用乘法公式的過程中,培養(yǎng)學(xué)生逆向思維的意識,同時讓學(xué)生了解換元的思想方法.
●教學(xué)重點
讓學(xué)生掌握運用平方差公式分解因式.
●教學(xué)難點
將某些單項式化為平方形式,再用平方差公式分解因式;培養(yǎng)學(xué)生多步驟分解因式的能力.
●教學(xué)方法
引導(dǎo)自學(xué)法
●教具準備
投影片兩張
第一張(記作12.3 A)
第二張(記作12.3 B)
●教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]在前兩節(jié)課中我們學(xué)習(xí)了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式.
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本節(jié)課我們就來學(xué)習(xí)另外的一種因式分解的方法——公式法.
Ⅱ.新課講解
[師]1.請看乘法公式
(a+b)(a-b)=a2-b2 (1)
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是
a2-b2=(a+b)(a-b) (2)
左邊是一個多項式,右邊是整式的乘積.大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
[生]符合因式分解的定義,因此是因式分解.
[師]對,是利用平方差公式進行的因式分解.第(1)個等式可以看作是整式乘法中的平方差公式,第(2)個等式可以看作是因式分解中的平方差公式.
2.公式講解
[師]請大家觀察式子a2-b2,找出它的特點.
[生]是一個二項式,每項都可以化成整式的平方,整體來看是兩個整式的平方差.
[師]如果一個二項式,它能夠化成兩個整式的平方差,就可以用平方差公式分解因式,分解成兩個整式的和與差的積.
如x2-16=(x)2-42=(x+4)(x-4).
9 m 2-4n2=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
3.例題講解
[例1]把下列各式分解因式:
(1)25-16x2;
(2)9a2-b2.
解:(1)25-16x2=52-(4x)2
=(5+4x)(5-4x);
(2)9a2- b2=(3a)2-(b)2
=(3a+b)(3a-b).
[例2]把下列各式分解因式:
(1)9(m+n)2-(m-n)2;
(2)2x3-8x.
解:(1)9(m +n)2-(m-n)2
=[3(m +n)]2-(m-n)2
=[3(m +n)+(m-n)][3(m +n)-(m-n)]
=(3 m +3n+ m-n)(3 m +3n-m +n)
=(4 m +2n)(2 m +4n)
=4(2 m +n)(m +2n)
(2)2x3-8x=2x(x2-4)
=2x(x+2)(x-2)
說明:例1是把一個多項式的兩項都化成兩個單項式的平方,利用平方差公式分解因式;例2的(1)是把一個二項式化成兩個多項式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,當(dāng)一個題中既要用提公因式法,又要用公式法分解因式時,首先要考慮提公因式法,再考慮公式法.
補充例題
投影片(12.3 A)
判斷下列分解因式是否正確.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)(a2-1).
[生]解:(1)不正確.
本題錯在對分解因式的概念不清,左邊是多項式的形式,右邊應(yīng)是整式乘積的形式,但(1)中還是多項式的形式,因此,最終結(jié)果是未對所給多項式進行因式分解.
(2)不正確.
錯誤原因是因式分解不到底,因為a2-1還能繼續(xù)分解成(a+1)(a-1).
應(yīng)為a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).
Ⅲ.課堂練習(xí)
(一)隨堂練習(xí)
1.判斷正誤
解:(1)x2+y2=(x+y)(x-y); ()
(2)x2-y2=(x+y)(x-y); (√)
(3)-x2+y2=(-x+y)(-x-y); ()
(4)-x2-y2=-(x+y)(x-y). ()
2.把下列各式分解因式
解:(1)a2b2-m2
=(ab)2-m 2
=(ab+ m)(ab-m);
(2)(m-a)2-(n+b)2
=[(m-a)+(n+b)][(m-a)-(n+b)]
=(m-a+n+b)(m-a-n-b);
(3)x2-(a+b-c)2
=[x+(a+b-c)][x-(a+b-c)]
=(x+a+b-c)(x-a-b+c);
(4)-16x4+81y4
=(9y2)2-(4x2)2
=(9y2+4x2)(9y2-4x2)
=(9y2+4x2)(3y+2x)(3y-2x)
3.解:S剩余=a2-4b2.
當(dāng)a=3.6,b=0.8時,
S剩余=3.62-40.82=3.62-1.62=5.22=10.4(cm2)
答:剩余部分的面積為10.4 cm2.
(二)補充練習(xí)
投影片(12.3 B)
把下列各式分解因式
(1)36(x+y)2-49(x-y)2;
(2)(x-1)+b2(1-x);
(3)(x2+x+1)2-1.
解:(1)36(x+y)2-49(x-y)2
=[6(x+y)]2-[7(x-y)]2
=[6(x+y)+7(x-y)][6(x+y)-7(x-y)]
=(6x+6y+7x-7y)(6x+6y-7x+7y)
=(13x-y)(13y-x);
(2)(x-1)+b2(1-x)
=(x-1)-b2(x-1)
=(x-1)(1-b2)
=(x-1)(1+b)(1-b);
(3)(x2+x+1)2-1
=(x2+x+1+1)(x2+x+1-1)
=(x2+x+2)(x2+x)
=x(x+1)(x2+x+2)
Ⅳ.課時小結(jié)
我們已學(xué)習(xí)過的因式分解方法有提公因式法和運用平方差公式法.如果多項式各項含有公因式,則第一步是提公因式,然后看是否符合平方差公式的結(jié)構(gòu)特點,若符合則繼續(xù)進行.
第一步分解因式以后,所含的多項式還可以繼續(xù)分解,則需要進一步分解因式,直到每個多項式都不能分解為止.
Ⅴ.課后作業(yè)
習(xí)題12.3
1.解:(1)a2-81=(a+9)(a-9);
(2)36-x2=(6+x)(6-x);
(3)1-16b2=1-(4b)2=(1+4b)(1-4b);
(4)m 2-9n2=(m +3n)(m-3n);
(5)0.25q2-121p2
=(0.5q+11p)(0.5q-11p);
(6)169x2-4y2=(13x+2y)(13x-2y);
(7)9a2p2-b2q2
=(3ap+bq)(3ap-bq);
(8)a2-x2y2=(a+xy)( a-xy);
2.解:(1)(m+n)2-n2=(m +n+n)(m +n-n)= m(m +2n);
(2)49(a-b)2-16(a+b)2
=[7(a-b)]2-[4(a+b)]2
=[7(a-b)+4(a+b)][7(a-b)-4(a+b)]
=(7a-7b+4a+4b)(7a-7b-4a-4b)
=(11a-3b)(3a-11b);
(3)(2x+y)2-(x+2y)2
=[(2x+y)+(x+2y)][(2x+y)-(x+2y)]
=(3x+3y)(x-y)
=3(x+y)(x-y);
(4)(x2+y2)-x2y2
=(x2+y2+xy)(x2+y2-xy);
(5)3ax2-3ay4=3a(x2-y4)
=3a(x+y2)(x-y2)
(6)p4-1=(p2+1)(p2-1)
=(p2+1)(p+1)(p-1).
3.解:S環(huán)形=πR2-πr2=π(R2-r2)
=π(R+r)(R-r)
當(dāng)R=8.45,r=3.45,π=3.14時,
S環(huán)形=3.14(8.45+3.45)(8.45-3.45)=3.1411.95=186.83(cm2)
答:兩圓所圍成的環(huán)形的面積為186.83 cm2.
Ⅵ.活動與探究
把(a+b+c)(bc+ca+ab)-abc分解因式
解:(a+b+c)(bc+ca+ab)-abc
=[a+(b+c)][bc+a(b+c)]-abc
=abc+a2(b+c)+bc(b+c)+a(b+c)2-abc
=a2(b+c)+bc(b+c)+a(b+c)2
=(b+c)[a2+bc+a(b+c)]
=(b+c)[a2+bc+ab+ac]
=(b+c)[a(a+b)+c(a+b)]
=(b+c)(a+b)(a+c)
●板書設(shè)計
12.3 運用公式法
一、1.由整式乘法中的平方差公式推導(dǎo)因式分解中的平方差公式.
2.公式講解
3.例題講解
補充例題
二、課堂練習(xí)
1.隨堂練習(xí)
2.補充練習(xí)
三、課時小結(jié)
四、課后作業(yè)
●備課資料
參考練習(xí)
把下列各式分解因式:
(1)49x2-121y2;
(2)-25a2+16b2;
(3)144a2b2-0.81c2;
(4)-36x2+y2;
(5)(a-b)2-1;
(6)9x2-(2y+z)2;
(7)(2m-n)2-(m-2n)2;
(8)49(2a-3b)2-9(a+b)2.
解:(1)49x2-121y2
=(7x+11y)(7x-11y);
(2)-25a2+16b2=(4b)2-(5a)2
=(4b+5a)(4b-5a);
(3)144a2b2-0.81c2
=(12ab+0.9c)(12ab-0.9c);
(4)-36x2+y2=(y)2-(6x)2
=(y+6x)(y-6x);
(5)(a-b)2-1=(a-b+1)(a-b-1);
(6)9x2-(2y+z)2
=[3x+(2y+z)][3x-(2y+z)]
=(3x+2y+z)(3x-2y-z);
(7)(2m-n)2-(m-2n)2
=[(2 m-n)+(m-2n)][(2 m-n)-(m-2n)]
=(3 m-3n)(m +n)
=3(m-n)(m +n)
(8)49(2a-3b)2-9(a+b)2
=[7(2a-3b)]2-[3(a+b)]2
=[7(2a-3b)+3(a+b)][7(2a-3b)-3(a+b)]
=(14a-21b+3a+3b)(14a-21b-3a-3b)
=(17a-18b)(11a-24b)