【數(shù)學畢業(yè)論文】Jensen不等式的推廣27935

上傳人:1666****666 文檔編號:37655458 上傳時間:2021-11-04 格式:DOC 頁數(shù):14 大?。?00.03KB
收藏 版權申訴 舉報 下載
【數(shù)學畢業(yè)論文】Jensen不等式的推廣27935_第1頁
第1頁 / 共14頁
【數(shù)學畢業(yè)論文】Jensen不等式的推廣27935_第2頁
第2頁 / 共14頁
【數(shù)學畢業(yè)論文】Jensen不等式的推廣27935_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

15 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《【數(shù)學畢業(yè)論文】Jensen不等式的推廣27935》由會員分享,可在線閱讀,更多相關《【數(shù)學畢業(yè)論文】Jensen不等式的推廣27935(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 本科畢業(yè)論文(設計) 題 目: Jensen不等式的推廣 院(系)專業(yè): 數(shù)學系(數(shù)學與應用數(shù)學) 學生姓名: 馮德文 學 號: 2003701107 導師(職稱): 楊慧章 (助教) 日 期: 2012年6月 紅河學院本科畢業(yè)論文(設計) 摘 要 凸函數(shù)是一種性質特殊的函數(shù),而凸函數(shù)的Jensen 不等

2、式是一個很重要的不等式,由它可推出一系列不等式,而凸函數(shù)的構造也有其妙處。為使其更廣泛應用于不等式的證明,本文利用凸函數(shù)的性質對Jensen不等式進行了推廣,得到幾個重要的積分不等式并進行了證明。 關鍵詞:凸函數(shù) ; 積分 Abstract The convex function is one function with special properties, but the Jensen inequality of convex function is a very important inequali

3、ty. According to the function, we can evolve a series of inequalities, and use it more easily to prove some important inequalities, but the convex function structures also have their advantages, In order to make good use of proving inequalities widely, in this paper, we use the properties of convex

4、function to expand the Jensen inequality, obtain several important integral inequalities and give the proof of them. Key word:Convex Function;Integral II 目 錄 緒論 1 1 預備知識 2 1.1 凸函數(shù) 2 1.2 Jensen不等式 2 2 Jensen不等式的推廣 4 2.1 積分型Jensen不等式 4 2.2 其它積分不等式 5 2.3 應用 8 結論 10 感謝信 11 參

5、考文獻 12 緒論 緒 論 不等式是研究分析數(shù)學的重要工具,在高等數(shù)學中我們要用到各種形式的不等式。本文主要利用凸函數(shù)的定義及性質去證明不等式。其關鍵是尋找合適的凸函數(shù),若不能直接找出,則對不等式進行適當?shù)淖冃?從而達到證明不等式的目的。 本文內(nèi)容安排如下: 第一章 預備知識。先介紹凸函數(shù)的定義及充要條件,再給出凸函數(shù)的Jensen不等式及其證明。 第二章 Jensen不等式的推廣。先利用凸函數(shù)的定義及性質把前一章給出的Jensen不等式推廣到積分形式,并給出證明。再由前章給出的知識以及積分型的Jensen不等式推出幾個重要積分不等式并進行證明。最后

6、給出兩個例子介紹它們的應用。 1 1預備知識 1 預備知識 1.1 凸函數(shù) 定義 設為定義在區(qū)間上的函數(shù),若對上的任意兩點和任意實數(shù)總有 則稱為上的凸函數(shù)。反之,如果總有 則稱為上的凹函數(shù)。 定理1 設為上的可導函數(shù),則為上的凸函數(shù)的充要條件是, 或 對上的任意兩點,有 1.2 Jensen不等式 定理2 (Jensen不等式) 為區(qū)間上的凸函數(shù),則對任意,且,有 (1-1) 2 再把上式兩端分別相加,得 由 及,上式變

7、為 = = 即 注:當時,有,則(1-1)式變?yōu)? (1-2) 3 結論 2 Jensen不等式的推廣 2.1 積分型Jensen不等式 命題1 若在區(qū)間上連續(xù),處處2階可導且,則有 (2-1) 證法:把區(qū)間等分,,把代入(1-2)式,有 即 因為,在上連續(xù),當時,有

8、 所以 2.2 其它積分不等式 命題2 若在連續(xù),,則 (2-3) 證明:設,,則,所以為凸函數(shù)。由命題1可得 即 所以 注:命題2為命題1的一般形式,相當于命題一中的。因為為凹函數(shù),所以符號相反。 命題3 若在區(qū)間連續(xù)且,則 (2-4) 證法一:設,,則。因為,所以,即為凸函數(shù)。根據(jù)命題1有 即 結論得證。 注:命題3由

9、命題1所得,相當于。 證法二:把 等分,分點為。因為算術平均值大于調(diào)和平均值,所以有 = 由有 令,取極限得 結論得證。 命題5 設在連續(xù),且則有 證:因為函數(shù) 為凸函數(shù),由Jensen不等式有 =。 = 綜上可得

10、 注:上式為均值不等式。 2.3 應用 例1 證明。 證:令.因為且的連續(xù)性,所以由Jensen不等式有 = = =。 結 論 凸函數(shù)是一個傳統(tǒng)研究課程,具有廣泛的實際背景和應用價值。對凸函數(shù)性質的探討是一個重要的研究方向。 本文凸函數(shù)Jensen不等式的應用僅僅是限于一元函數(shù)而言,可將其推

11、廣到多元函數(shù),將空間擴充到凸集的范圍,這些類似定理和結論以及相關應用有待一步研究。 9 紅河學院本科畢業(yè)論文(設計) 感謝信 在畢業(yè)論文完成之際,向給予我?guī)椭椭笇У母魑焕蠋熀屯瑢W表示衷心的感謝! 首先,我要感謝我的論文導師楊慧章老師,因為有她耐心的指導、鼓勵和幫助我才順利完成我的畢業(yè)論文。 借此機會我向數(shù)學系老師表示衷心的感謝,感謝他們四年來的精心指導和培養(yǎng)。 10 參考文獻 [1]林玎,劉偉.Jensen不等式的幾個推論及其應用[J].吉林師范大學學報,2003,8(3):28-23. [2]劉飛燕.Jensen不等式及其應用[J].云南民族大學學報,2003,7(3):148-151. [3]徐偉.積分形Jensen不等式的巧用[J].高等數(shù)學研究,2002,6(4):15-16. [4]陳欣.關于Jensen不等式的應用[J].武漢工業(yè)學院學報,2005,9(3):113-115. [5]劉鴻雁.由Jensen不等式導出某些重要不等式 [J].成都大學學報 ,2003,12(4):32-35. [6]尚亞東,游淑軍.凸函數(shù)及其在不等式證明中的應用[J].廣州大學學報,2005,2(1):1-6. 11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!