裝配圖基于YQP36預(yù)加水盤(pán)式成球機(jī)設(shè)計(jì)
裝配圖基于YQP36預(yù)加水盤(pán)式成球機(jī)設(shè)計(jì),裝配,基于,yqp36,加水,盤(pán)式成球機(jī),設(shè)計(jì)
鹽城工學(xué)院畢業(yè)設(shè)計(jì)說(shuō)明書(shū) 2006
YQP36預(yù)加水盤(pán)式成球機(jī)設(shè)計(jì)
摘 要:為了滿足現(xiàn)代機(jī)立窯水泥生產(chǎn)過(guò)程中預(yù)加水成球的技術(shù)要求,發(fā)展第六代預(yù)加水盤(pán)式成球機(jī),從而保證料球的粒徑均勻性、高強(qiáng)度、高孔隙率和高產(chǎn)量,提高水泥的煅燒質(zhì)量和產(chǎn)量,本課題設(shè)計(jì)了YQP36預(yù)加水盤(pán)式成球機(jī)。根據(jù)最新的技術(shù)要求對(duì) YQP36預(yù)加水盤(pán)式成球機(jī)的結(jié)構(gòu)、傳動(dòng)系統(tǒng)和刮刀系統(tǒng)進(jìn)行了改進(jìn)設(shè)計(jì)。本次設(shè)計(jì)采用理論設(shè)計(jì)和經(jīng)驗(yàn)設(shè)計(jì)相結(jié)合的方法,在通過(guò)類比設(shè)計(jì)保證機(jī)架與支架的支承強(qiáng)度的基礎(chǔ)上優(yōu)化了傳動(dòng)系統(tǒng)和刮刀系統(tǒng)。參考實(shí)踐生產(chǎn)中的一些改進(jìn)經(jīng)驗(yàn),首先進(jìn)行了總體方案的論證;然后根據(jù)分析的結(jié)果來(lái)計(jì)算各傳動(dòng)軸的軸向力、扭矩以及功率,并校核了軸和螺栓的強(qiáng)度,從而選擇電機(jī)和減速機(jī)型號(hào)及設(shè)計(jì)其他相關(guān)零部件。根據(jù)已確定的部件參數(shù)分析擬定傳動(dòng)裝置的運(yùn)動(dòng)簡(jiǎn)圖,分配各級(jí)傳動(dòng)比,確定了傳動(dòng)零件的結(jié)構(gòu);接著對(duì) YQP36預(yù)加水盤(pán)式成球機(jī)的潤(rùn)滑和密封方式加以確定;最后對(duì)預(yù)加水盤(pán)式成球機(jī)的維護(hù)修理加以說(shuō)明,從而完成預(yù)加水盤(pán)式成球機(jī)的總體結(jié)構(gòu)設(shè)計(jì)。此次設(shè)計(jì)本著高產(chǎn)量、高質(zhì)量成球,穩(wěn)定運(yùn)轉(zhuǎn)的原則,實(shí)現(xiàn)了現(xiàn)代預(yù)加水盤(pán)式成球的節(jié)能、經(jīng)濟(jì)、環(huán)保、可擴(kuò)展的目的。
關(guān)鍵詞: 成球;預(yù)加水;刮刀;料球
The Design of YQP36 Disc Prewatering Pelletizer
Abstract: In order to satisfy the technical requirement of prewatering pelletizing in the process of cement production with modern kiln and develop the sixth generation of prewatering pelletizer, the topic which is designed is YQP36 Disc Prewatering Pelletizer. Consequently the proportion of diameters, the high strength, the high holes rate and the high output of raw meal pellets could be assured of. According to the new requirements, the structure, the transmission system and the drawknife system of YQP36 Disc Prewatering Pelletizer are improved and designed. This design has been completed by the method which combines theories design with experience design. The transmission system and drawknife system are optimized basing on that the strengths of chassis and support are assured with analogy design. Firstly, the projects of designation and improvement of prewatering pelletizer are demonstrated, including the structure, the ways of delivering the motivation and drawknife system by referring some improvement experience from production practice; Secondly, based on the analytical results, axial force, the torque and power are computed so that the electromotor, decelerator and other corresponding components could be determined; Thirdly, according to the parameters of the parts which has already been assured, the simple exercise diagram of the transmission device is analyzed and drawn up and the ratios of all levels are assigned. Then the structure design is carried on and the strength of part is followed to be checked. The ways of lubricant and seal of the equipment are determined in succession. Finally, the whole overall arrangement scheme of YQP36 prewatering pelletizing equipment is designed. This design is in the light of the principle of the high yield, high quantity of pelletizing and stable operation. In addition, the requirements of YQP36 will be satisfied, including economy of energy, economy, environmental protection and enlargement.
Key words: pelletizing; prewatering; drawknife; raw meal pellet
畢 業(yè) 設(shè) 計(jì) 說(shuō) 明 書(shū)
YQP36預(yù)加水盤(pán)式成球機(jī)設(shè)計(jì)
專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué)生姓名 楊 聞 達(dá)
班 級(jí) B材機(jī)022
學(xué) 號(hào) 0210120211
指導(dǎo)教師 楊 曉 紅
完成日期 2006年5月28日
文 獻(xiàn) 資 料
專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 生 姓 名 楊 聞 達(dá)
班 級(jí) B材機(jī)022
學(xué) 號(hào) 0210120211
指 導(dǎo) 教 師 楊 曉 紅
文 獻(xiàn) 資 料
[1] 彭常皓.對(duì)老式成球盤(pán)的改造[J].四川水泥,1996.No.2:32~34.
[2] 馬正先.合理調(diào)整成球盤(pán) 降低爆球率[J].水泥技術(shù),1994.No.6:50~51,32.
[3] 王振宇,孟德忠.清理成球盤(pán)邊掛泥的辦法[J].水泥,1996.No.12:59.
[4] 李國(guó)權(quán).成球盤(pán)減速機(jī)的選型[J].水泥,1996.No.12:43.
[5] 徐雙龍.成球盤(pán)減速機(jī)漏油的處理[J].四川水泥,2001.No.6: 32.
[6] 黃勝.成球盤(pán)減速器輸入軸的改進(jìn)[J].水泥,2001.No.1:49.
[7] 侯義杰.成球盤(pán)孔與軸鍵聯(lián)接失效的修復(fù)及改進(jìn)[J].工程師園,2000.No.4:27.
[8] 孫德隆,姜勇.成球盤(pán)擴(kuò)徑改造的實(shí)踐及論證[J].四川水泥,1998.No.2:23~25.
[9] 梁東武.φ3.6m成球盤(pán)傳動(dòng)機(jī)構(gòu)的改造[J].水泥,1996.No.3:23.
[10] 郝志東.φ3.2m成球盤(pán)傳動(dòng)裝置的改進(jìn)[J].水泥,1998.No.12:49~50.
[11] 李銀鋒.預(yù)加水成球盤(pán)傳動(dòng)裝置的現(xiàn)狀及改進(jìn)[J].水泥,1994.No.4:32~34.
[12] 黃金平.φ3.2m預(yù)加水成球盤(pán)成球刮刀機(jī)的改進(jìn)[J].中國(guó)建材裝備,2001.No.3:16~17.
[13] 張貴春.φ3.2m 成球盤(pán)曲柄滑塊式刮刀裝置[J].水泥,2000.No.5:39.
[14] 李升朝.成球盤(pán)邊刮刀的改進(jìn)[J].水泥,1996.No.12:41.
[15] 趙文濤.成球盤(pán)底刮刀傳動(dòng)系統(tǒng)的改進(jìn)[J].水泥,1998.No.11:48.
[16] 楊軍.成球盤(pán)刮刀的改造[J].水泥,2004.No.2:65.
[17] 郭紅軍.成球盤(pán)刮刀系統(tǒng)的改造技術(shù)[J].水泥,1996.No.12:42~43.
[18] 鄧清華.成球盤(pán)刮料裝置的改進(jìn)[J].江西建材,1998.No.1:31~32.
[19] 王樹(shù)華.成球盤(pán)無(wú)動(dòng)力刮刀的改進(jìn)[J].四川水泥,1998.No.1:31,25.
[20] 郝志東.預(yù)加水成球盤(pán)底刮刀裝置簡(jiǎn)介[J].水泥工程,1999.No.4:29~30.
[21] 閻瑞敏,常敏.水泥工業(yè)自動(dòng)控制預(yù)加水成球技術(shù)及裝備[M].江蘇科學(xué)技術(shù)出版社,1990.10.
[22] 黃有豐.預(yù)加水成球技術(shù)及其應(yīng)用[M].北京:中國(guó)建筑工業(yè)出版社,1991.9.
畢業(yè)實(shí)習(xí)報(bào)告
專 業(yè) 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué) 生 姓 名 楊 聞 達(dá)
班 級(jí) B材機(jī)022
學(xué) 號(hào) 0210120211
指 導(dǎo) 教 師 楊 曉 紅
日 期 2006.03.19
實(shí) 習(xí) 報(bào) 告
一、 概述
實(shí)習(xí)的主要目的在于通過(guò)此次實(shí)習(xí)對(duì)具體建材機(jī)械設(shè)備的設(shè)計(jì)方法、設(shè)計(jì)規(guī)范、加工工藝、制造過(guò)程和裝配過(guò)程有所掌握及對(duì)各種加工設(shè)備的使用有所了解,對(duì)所學(xué)專業(yè)知識(shí)的鞏固,并對(duì)畢業(yè)設(shè)計(jì)和畢業(yè)論文的撰寫(xiě)針對(duì)性地和最大限度地準(zhǔn)備素材,收集實(shí)際生產(chǎn)管理資料,同時(shí)增強(qiáng)自身的分析和解決工程問(wèn)題的能力、實(shí)踐能力、自學(xué)能力及創(chuàng)新能力。間接地了解機(jī)械生產(chǎn)企業(yè)運(yùn)作管理,為以后的工作及創(chuàng)業(yè)增加砝碼,打下堅(jiān)實(shí)的基礎(chǔ)。
實(shí)習(xí)的具體目的在于通過(guò)此次實(shí)習(xí)熟悉機(jī)立窯、回轉(zhuǎn)窯、球磨機(jī)、破碎機(jī)、選粉機(jī)、輸送攪拌機(jī)械等的生產(chǎn)過(guò)程及控制方式,特別是了解預(yù)加水成球盤(pán)(YQP36)的設(shè)計(jì)、制造、安裝和調(diào)試,了解成球盤(pán)結(jié)構(gòu)功能、成球過(guò)程、最新的成球技術(shù)及成球盤(pán)在整個(gè)水泥生產(chǎn)過(guò)程的具體作用。
畢業(yè)實(shí)習(xí)是一次針對(duì)畢業(yè)設(shè)計(jì)的綜合性的實(shí)踐,是一次很好的專業(yè)知識(shí)的運(yùn)用訓(xùn)練,是一次從學(xué)校向社會(huì)過(guò)渡的準(zhǔn)備。
二、 實(shí)習(xí)過(guò)程
本次所到的實(shí)習(xí)基地有江蘇鵬飛集團(tuán)建材設(shè)備廠、江蘇鵬飛集團(tuán)總部、江蘇海建集團(tuán)、江蘇蘇亞公司和鹽城聯(lián)鑫水泥有限公司。具體實(shí)習(xí)過(guò)程如下:
3月7日在江蘇鵬飛集團(tuán)建材設(shè)備廠進(jìn)行建材裝備實(shí)習(xí),主要熟悉回轉(zhuǎn)窯、球磨機(jī)、烘干機(jī)、破碎機(jī)、輸送攪拌機(jī)和預(yù)加水成球盤(pán)等及其輔助零部件的結(jié)構(gòu)、設(shè)計(jì)、制造工藝、安裝的具體過(guò)程。
3月8日在江蘇鵬飛集團(tuán)總部進(jìn)行建材裝備實(shí)習(xí),主要熟悉管磨機(jī)、回轉(zhuǎn)窯等大型設(shè)備的結(jié)構(gòu)工藝。
3月9號(hào)—3月10日在江蘇海建集團(tuán)進(jìn)行裝備實(shí)習(xí),主要熟悉回轉(zhuǎn)窯、球磨機(jī)、烘干機(jī)、輥壓機(jī)、打散機(jī)、成球盤(pán)、輸送攪拌機(jī)和選粉機(jī)等及其輔助零部件的結(jié)構(gòu)、設(shè)計(jì)制造安裝的具體過(guò)程。
3月14日在江蘇蘇亞公司進(jìn)行裝備實(shí)習(xí),主要了解各種選粉機(jī)和除塵器的構(gòu)造和制造安裝過(guò)程。
3月16日在鹽城聯(lián)鑫水泥有限公司實(shí)習(xí),主要了解采用立窯生產(chǎn)水泥的各種設(shè)備的結(jié)構(gòu)和技術(shù)要求、生產(chǎn)流程和功用的實(shí)現(xiàn)。
三、 實(shí)習(xí)內(nèi)容
對(duì)于回轉(zhuǎn)窯的認(rèn)識(shí):
1.回轉(zhuǎn)窯結(jié)構(gòu)組成
濕法回轉(zhuǎn)窯簡(jiǎn)圖
1-煤倉(cāng);2-燃燒器;3-窯頭罩;4-簡(jiǎn)體,5-輪帶和支承托輪;6-傳動(dòng)裝置;7-窯內(nèi)熱交換器;8-料漿喂料器,9-煙室;10-電收塵器;11-煙囪;12-排風(fēng)機(jī);13-熱料冷卻
筒體、輪帶、托輪、支承裝置、傳動(dòng)裝置、窯頭和窯尾密封裝置等部分組成
2 .回轉(zhuǎn)窯機(jī)械結(jié)構(gòu)特點(diǎn)
薄壁筒體。形大體重。多支點(diǎn)的支承,熱工設(shè)備。
3 .在回轉(zhuǎn)窯設(shè)計(jì)、制造、運(yùn)輸、安裝等各環(huán)節(jié)中,應(yīng)始終考慮該機(jī)器“大而重”的特點(diǎn),并切實(shí)保證“直而圓”的要求。
對(duì)立窯的認(rèn)識(shí):
機(jī)械立窯主要由喂料裝置、窯罩煙囪、窯體、卸料裝置、傳動(dòng)裝置,電氣控制、料封和料位控制、收塵裝置組成。
卸料裝置有塔篦和立窯底座構(gòu)成。塔篦主要由鑄造而成,起到卸料和破碎的作用,所以塔篦本身就需要有很好的結(jié)構(gòu)來(lái)避免摩損。立窯底座中心與主軸中心一致,在側(cè)邊還布有下料管和風(fēng)管。風(fēng)管給煅燒的料球通風(fēng)一達(dá)到合理分布立窯內(nèi)預(yù)熱帶、燒成帶和冷卻帶的分布及料球的燃燒質(zhì)量。
對(duì)球磨機(jī)的認(rèn)識(shí):
1 .球磨機(jī)的分類
操作方法不同而有開(kāi)流閉流之分;卸料方式不同而有中卸和尾卸之分;傳動(dòng)方式不同而有邊緣傳動(dòng)和中心傳動(dòng)之分。
邊緣傳動(dòng)常用中空軸軸承支承,而中心傳動(dòng)常采用滑履支承,其主要用于大型磨機(jī)上。
2 .球磨機(jī)的結(jié)構(gòu)基本上由以下五部分組成:
2.1 進(jìn)料裝置 包括下料斗螺旋筒及襯板等部件
2.2 支承裝置 分兩端主軸承式,兩組輪帶托輪式.一端滑履軸承、一端主軸承,兩端都是滑履軸承。采用鑄鋼底座,從而起到吸振作用
球磨機(jī)主軸承承擔(dān)整個(gè)磨機(jī)回轉(zhuǎn)部分的重力,一般由軸瓦、軸承蓋、軸承座、潤(rùn)滑及冷卻系統(tǒng)所組成。3米以上磨機(jī)要求其軸承進(jìn)行潤(rùn)滑再潤(rùn)滑。
2.3 回轉(zhuǎn)部分:包括中空軸、端蓋、筒體、隔倉(cāng)板、襯板。
2.3.1 筒體:
筒體是球磨機(jī)的主要工作部件之一,物料在筒體內(nèi)被研磨體沖擊和研磨而磨成細(xì)粉。筒體是用鋼板卷制焊接而成的圓筒形薄壁殼體,在筒體上還開(kāi)有磨門(mén)。
制造筒體的材料有普通結(jié)構(gòu)鋼A3,鍋爐鋼板20 g,20號(hào)優(yōu)質(zhì)結(jié)構(gòu)鋼和16Mn低合金結(jié)構(gòu)鋼。這些材料的強(qiáng)度、塑性和可焊性都能滿足要求。常采用三輥式和四輥式的卷板機(jī)卷曲而成。
筒體上固定襯板和隔倉(cāng)板的螺栓孔,應(yīng)根據(jù)襯板尺寸等距開(kāi)設(shè),縱橫成行。筒體焊縫中心與螺栓孔中心應(yīng)不少于二倍半的螺栓直徑,因焊縫附近有較大的應(yīng)力集中影響,同時(shí)也便于螺栓的固定。
筒體在制造中要滿足下列要求:筒體斷面要圓,筒體縱向中心線要直,法蘭端面與縱向中心線垂直。筒體各部分存在著內(nèi)應(yīng)力,是磨機(jī)工作時(shí)出現(xiàn)裂縫的根源,所以在筒體焊接,焊縫要叉開(kāi),外圓點(diǎn)焊,內(nèi)圓線焊,切割磨門(mén)和鉆孔后,應(yīng)當(dāng)退火,就有可能防止裂縫出。直徑3米以上的筒體一定要求退火處理。常用波口有X形和V形。
筒體兩端的法蘭止口圓與磨頭要同心,端蓋與筒體結(jié)合面要精加工,兩端法蘭止口要彼此平行,并與筒體縱向中心線垂直, 磨頭和法蘭螺栓孔要精確重合,并有不少于15%的鉸孔螺栓栓起定位作用, 螺栓要用同種牌號(hào)的鋼制造,并要均勻地?cái)Q緊。
對(duì)于筒體的加工采用落地車(chē)床,如C6031(最大直徑:3150mm,最大長(zhǎng)度:2000mm)。其采用錐體盤(pán)夾緊,通過(guò)摩擦帶動(dòng)通體周向轉(zhuǎn)動(dòng)。
筒體為了維持其成形后的圓度,常采用工裝,同時(shí)其也用于調(diào)圓作用,如米字撐。
2.3.2 磨頭:
磨頭由中空軸和端蓋等部分組成,是磨機(jī)的主要零件之一,承受著整個(gè)磨機(jī)的動(dòng)載荷,磨頭的結(jié)構(gòu)形式主要有兩部,一種是中空軸和端蓋鑄造成一整體;另一種磨頭是把端蓋和中空軸分別鑄造,加工后再組裝到一起。
一般大中型磨機(jī)采用鑄ZG35 作為中空軸的材料,小磨機(jī)因?yàn)槭芰^小,考慮到成本低和取材容易,一般用鑄鐵或球墨鑄鐵作為磨頭材料。
進(jìn)料螺旋筒磨機(jī)端需要配鋼球擋圈,以免砸傷螺旋,同時(shí)也起到均勻穩(wěn)定出料的作用。另一種方法是采用改變螺旋螺距的大小來(lái)達(dá)到進(jìn)料快速,出料均勻穩(wěn)定的效果。
出料段螺旋的螺距一致,主要要求其出料均勻穩(wěn)定。
中空軸卸料段外圓處裝有回轉(zhuǎn)篩,回轉(zhuǎn)篩除有起到篩料選料的作用外,還有排出破碎鋼球的作用,在其結(jié)構(gòu)上都有體現(xiàn)。最后安裝入出料斗,對(duì)于出料斗要求有很好的密封。
2.3.3 襯板:
襯板的表面形狀:平襯板,壓條襯板,突棱襯板,階梯襯板,平襯板,壓條襯板。
襯板類型
a) 壓殺襯板;b)突棱襯板;(c)波形襯板;d)階梯襯板;e)平襯板;
f)波紋襯板;(g)半球形襯板 l一壓條;2一平襯板
2.3.4 隔倉(cāng)板:
隔倉(cāng)板上裝有篦板,其對(duì)磨料進(jìn)行篩選、分倉(cāng),從而對(duì)不同粒徑的磨料進(jìn)行相對(duì)的粉磨。同時(shí)也隔開(kāi)不同直徑的磨球。這樣不會(huì)導(dǎo)致過(guò)粉磨,增加電耗。
2.4 卸料裝置:
由螺旋出料筒、出料中空軸、回轉(zhuǎn)篩和出料斗組成。對(duì)于邊緣傳動(dòng)的磨機(jī)而言,其出料中空軸與中心傳動(dòng)的磨機(jī)的有所不同,相應(yīng)的出料斗也不同,主要就是存在中空軸端還有連有聯(lián)軸器的結(jié)構(gòu)。
2.5 傳動(dòng)裝置:
中心和邊緣傳動(dòng)兩種形式,包括電機(jī)減速機(jī)、聯(lián)軸器及邊緣傳動(dòng)的大小輪。
對(duì)于邊緣傳動(dòng)形式的磨機(jī)而言,小齒輪軸通常有中心孔和起吊孔,從而在起吊的過(guò)程中不因其重量而帶來(lái)起吊的不便,避免影響其加工后的質(zhì)量和出現(xiàn)人身安全。
對(duì)除塵器的認(rèn)識(shí):
XLK型旋風(fēng)收塵;CLT/A型旋風(fēng)收塵器;XLP型旋風(fēng)收塵器;組合式旋風(fēng)收塵器;氣環(huán)反吹袋式收塵器;脈沖袋式收塵器;機(jī)械回轉(zhuǎn)反吹袋式收塵器;反吹風(fēng)袋式收塵器;旋風(fēng)順氣脈沖袋式收塵器。
對(duì)于旋風(fēng)收塵器有采用二次出風(fēng)。在其下端側(cè)邊有二次出風(fēng)管,同時(shí)它也簡(jiǎn)化了旋風(fēng)的出風(fēng)路徑。它改變了以往的旋風(fēng)收塵器的功耗大的問(wèn)題,將兩次出風(fēng)再次回到選粉機(jī),大大降低了功耗。
對(duì)輥壓機(jī)的認(rèn)識(shí):
輥壓機(jī)主要結(jié)構(gòu):輥壓機(jī)主要結(jié)構(gòu)包括壓輥軸、傳動(dòng)、機(jī)架、液壓、喂料。
所能達(dá)到效果有:55MPa的壓力,兩輥輪相對(duì)轉(zhuǎn)動(dòng),將30%~45%的料壓成塊狀。
輥輪在堆焊前外圓面上有加工的條紋,這樣保證堆焊的粘結(jié)質(zhì)量。輥輪的外圓邊處還有沉圓,以保證堆焊后的焊料能軸向固定。
對(duì)于輥壓機(jī)的主軸加工中為了對(duì)軸起到冷卻的效果,常有在軸上鉆中心通孔。主軸常采用鍛鋼加工制造而成。
對(duì)螺旋輸送機(jī)械的認(rèn)識(shí):
螺旋是螺旋輸送機(jī)的基本構(gòu)件,它是由軸和螺旋面組成的。另外還有電機(jī)和減速機(jī)等組成。軸承常采用調(diào)心軸承從而承受拌料時(shí)的軸向力。螺旋輸送機(jī)內(nèi)的螺旋面大多才用螺旋葉片按90°分布在軸上,也有采用螺旋葉片和螺旋面相結(jié)合的。對(duì)于一臺(tái)螺旋輸送機(jī),常有在前段采用螺旋面式,后段采用螺旋葉片式,從而保證進(jìn)料均勻,以便能在加水?dāng)嚢柘履苄纬筛哔|(zhì)量的球核。
對(duì)斗式提升機(jī)的認(rèn)識(shí):
斗式提升機(jī)的主要部件有:料斗、牽引構(gòu)件、機(jī)首、底座和中間罩殼等。常用的料斗有三種結(jié)構(gòu)形式:淺料斗、深料斗和導(dǎo)向邊料斗。斗式提升機(jī)所用的牽引構(gòu)件有輸送膠帶和鏈條。提升機(jī)所用鏈條有關(guān)節(jié)鏈及焊接鏈。提升機(jī)的中間罩殼,在固定式的裝置中,應(yīng)用由 2~4 mm的薄鋼板焊成。
對(duì)烘干機(jī)的認(rèn)識(shí):
烘干機(jī)出料端一般用密封鋼皮密封,其內(nèi)部的揚(yáng)料板采用不同的角度和長(zhǎng)度以及之間的間距來(lái)調(diào)整揚(yáng)料烘干的效果,從而達(dá)到節(jié)能高效的目的。
對(duì)成球盤(pán)的認(rèn)識(shí):
成球盤(pán)的成球過(guò)程中,除了有大盤(pán)由主電機(jī)通過(guò)減速機(jī),大小齒輪的傳動(dòng)所得到的轉(zhuǎn)動(dòng)外,還有動(dòng)力刮刀的轉(zhuǎn)動(dòng),另外也有無(wú)動(dòng)力刮刀的自身轉(zhuǎn)動(dòng)。
盤(pán)體有兩種:可調(diào)容量式和固定容量式盤(pán)體??烧{(diào)式的盤(pán)體主要通過(guò)螺母螺栓的軸向調(diào)節(jié)實(shí)現(xiàn)。
有見(jiàn)到的傳動(dòng)例子:
1. 電機(jī)(380V,8.5KW)+齒輪外嚙合減速器(i=15.75)
2. 三相電機(jī)(380V,16KW,1440r/min)+行星輪減速器(i=25)
3. 小齒輪要求進(jìn)行調(diào)質(zhì)HB241-286處理,m=10,z=28,α=20°,A=625,ha*=1,ξ=0,h=225,Fp=0.18,fd=±0.045。
鉸孔套采用35材料,先鍛打成毛坯而后車(chē)削。
盤(pán)體的傾斜度要求在40°~55°
鉆腳座孔:1.先打小孔以便定位;2.鉆大孔。
四、 球磨機(jī)大齒輪加工的分析
大齒輪有以下2種加工工藝:
1.1 準(zhǔn)備half結(jié)構(gòu)鑄造毛坯à銑half結(jié)構(gòu)的結(jié)合端面à畫(huà)線鉆孔à連接兩half結(jié)構(gòu)的輪圈à鉸孔à鉸制螺栓螺母連接à以輪緣內(nèi)圓為粗基準(zhǔn)、車(chē)外端面、輪轂內(nèi)圓端面、輪緣外圓à以輪轂內(nèi)圓,輪緣側(cè)面為精基準(zhǔn)車(chē)另一測(cè)輪轂側(cè)面、輪緣側(cè)面à刨齒à滾齒。
1.2 準(zhǔn)備half結(jié)構(gòu)鑄件毛坯à銑half結(jié)構(gòu)的結(jié)合端面à合并half結(jié)構(gòu),焊接à以輪緣內(nèi)圓為粗基準(zhǔn)、車(chē)外端面、輪轂內(nèi)圓端面、輪緣外圓à以輪轂內(nèi)圓,輪緣側(cè)面為精基準(zhǔn)車(chē)另一測(cè)輪轂側(cè)面、輪緣側(cè)面à拆焊à 鉆孔à對(duì)孔焊接à鉸孔à刨齒à滾齒。(其中刨齒為了提高效率,降低成本,質(zhì)量相對(duì)于直接滾齒稍差。)
有時(shí)在兩half結(jié)構(gòu)為了讓對(duì)孔合并方便常采用定位銷(xiāo)的方法定位兩half結(jié)構(gòu)。
五、 實(shí)習(xí)感想
通過(guò)此次實(shí)習(xí),對(duì)水泥生產(chǎn)工藝和設(shè)備有進(jìn)一步的認(rèn)識(shí),特別是水泥生產(chǎn)的過(guò)程裝備方面有更詳細(xì)的了解及對(duì)各設(shè)備內(nèi)部的結(jié)構(gòu)和作用有更深層次的認(rèn)識(shí)。此次實(shí)習(xí)讓我們看到了書(shū)本上沒(méi)有的東西,也深知具體的技術(shù)問(wèn)題的分析解決的能力是書(shū)本學(xué)習(xí)所無(wú)法給的,對(duì)于我們工程人員特別要加強(qiáng)自身的工程意識(shí)。此次實(shí)習(xí)也讓我們重新學(xué)習(xí)了制圖測(cè)繪、機(jī)械原理、機(jī)械設(shè)計(jì)、機(jī)械制造、水泥工藝和水泥設(shè)備等基礎(chǔ)專業(yè)知識(shí),為我們的畢業(yè)設(shè)計(jì)和以后的工作打下基礎(chǔ)。
在實(shí)習(xí)過(guò)程中,主要對(duì)成球盤(pán)和球磨機(jī)有進(jìn)一步的認(rèn)識(shí)。
對(duì)于成球盤(pán),了解了它的過(guò)去和現(xiàn)在最新的技術(shù),現(xiàn)在的發(fā)展方向是向節(jié)能高效上發(fā)展。對(duì)于不同的公司,其產(chǎn)品有很大的不同,主要有在傳動(dòng)方式和傳動(dòng)布局有所不同。在盤(pán)體設(shè)計(jì)制造安裝上也有不同,主要四采用是否可調(diào)容量和采用材料的不同,有采用剪裁不同的鋼板進(jìn)行焊接,也有大量使用型材,特別是槽鋼和工字鋼的使用,從而在強(qiáng)度和成本上有更大的突破。在刮板方面,最近為了節(jié)省能源消耗,使用無(wú)動(dòng)力刮板或有動(dòng)力刮板和無(wú)動(dòng)力刮板結(jié)合使用,但對(duì)于無(wú)動(dòng)力刮板的設(shè)計(jì)上仍存在缺陷,在常使用V形刮板已在成球質(zhì)量上就如此,現(xiàn)在更多的是采用攪拌式的邊刮刀和底刮刀,這樣的改進(jìn)也解決了成球質(zhì)量上的要求。調(diào)角器的設(shè)計(jì)上除了能調(diào)整盤(pán)體傾斜的角度外,還要求能鎖緊的效果,其中采用蝸輪蝸桿傳動(dòng)和螺母螺栓軸向傳動(dòng)能有更好的效果。這樣的改進(jìn)從而能保證質(zhì)量。
對(duì)于球磨機(jī),有中卸式和尾卸式,同時(shí)也有中心傳動(dòng)式和邊緣傳動(dòng)式。此次實(shí)習(xí)就其具體的結(jié)構(gòu)有了全面的認(rèn)識(shí) ,從支承裝置、傳動(dòng)裝置、筒體結(jié)構(gòu)、進(jìn)料裝置和出料裝置等都有深入的理解。
此次實(shí)習(xí)鍛煉了我的分析和解決工程問(wèn)題的能力、獨(dú)立思考和自學(xué)的能力和實(shí)踐能力。此次實(shí)習(xí)所收集的資料為我畢業(yè)設(shè)計(jì)做好了充分的準(zhǔn)備。
8
Feasibility study requirements for a new cement plant
R.Hogg, D Frame and M.E. Asim, WS Atkins Consultants, UK, discuss the theory and practice of undertaking large cement plant projects.
FOR SPANISH AND FRENCH VERSIONS PLEASE REFER TO THE SPECIAL TRANSLATED SECTION AT THE BACK OF THE ISSUE
Introduction
The decision to start the construction of an entirely new cement plant facility, or a major capacity extension at an existing cement works, should always be based on a detailed techno-economic feasibility study. Such a study will indicate to the promoter the viability of the business in terms of the best technical solution, the overall capital and operating casts, the magnitude of the operation in terms of production and workforce needed, and the return on his investment over a period of time.
A typical feasibility study deals with the following issues:
Marketing study.
Raw materials proving.
Site studies.
Conceptual engineering and process design.
Analysis of alternatives.
Project cost including infrastructure.
Project schedule.
Investment analysis, risk assessment, development of financial structures.
Project finance.
Discussion with financing institutions.
Whilst any feasibility study must include technical aspects, it is important to realize the full implications of marketing research and accurate financial projections.
Pro-feasibility study
In order to minimize front end expenditure and to quickly obtain a firm indication of the likely project viability, a pre-feasibility study is performed.
The pre-feasibility study is carried out at low cost, but in sufficient detail to show whether a full feasibility study is justified. The pre-feasibility study will examine the market place, the raw materials, capital and operating costs, and develop a business plan to show the likely returns on the investment, and identify the risks and scale of operation involved.
Typically this exercise will take four to six weeks to complete, commencing with a site visit. However, the study is largely performed by desk research and reference to the in-house date base. The site visit is used to determine the suitability of raw materials for cement manufacture, local building and civil engineering costs, cost of land and peculiarities of the particular site location, and local cost of consumables required in the operation of the plant. The desk research concentrates upon current plant and machinery costs, financial and marketing considerations and preliminary plant sizing and determination of the process route.
In the event of the pre-feasibility study showing a clear indication that it is worthwhile to proceed with the project, then a full feasibility study can be initiated.
Full feasibility study
Market research
The objective of the market study is to establish the demand for the various types of cement in the context of the region or market area of the proposed plant. The study seeks to establish the current and forecast cement usage over a 5-7 year period. The forecast is then used together with the indicated selling prices to generate the likely revenue stream for the proposed operation.
The consultant must have considerable experience in the global cement industry and be able to approach a feasibility study with an excellent knowledge of prevailing market conditions and likely trends. Each individual company and market does, however, present a unique set of circumstances which must be fully understood. The normal approach adopted is first to study the company and identify its strengths and weaknesses, strategic direction and motivation. This is essential in providing an immediate picture of the company’s likely success in achieving its aims.
The second stage of the marketing survey, desk research, puts the initial discussions into context by examining a wide range of published data relevant to the industry.
Sources of published data are collated and compared by a team of researchers and consultants in an operation to substantiate known trends and uncover new information. It is not sufficient to rely on information several months old, and without an international perspective, trends in cement production and demand are frequently misleading.
Collecting published data is an on-going process, but having established a background to the study, information should, where possible, be verified using independent sources with firsthand accounts of the industry and its outlook. Companies, government organisations and other industry associations are often willing to provide their own assessment lf markets, but care needs to be taken not to compromise any party prepared to give its view.
Armed with a comprehensive selection of published data and industry opinion, the job of the consultant at this stage is to accurately define not only the market size for a particular product, but the likely change in that market. Such changes are often predicted by historic relationships between, for instance GDP and overall construction activity; economic growth and housing starts of cement consumption and population size. Figure 1 illustrates this point. Without taking into account subjective opinion and recognizing changing user requirements for different cement types, such forecasts can be flawed. Analysis of such factors is particularly important in lesser developed countries where impressive growth rates can change the balance of construction activity over remarkably short periods of time.
Other economic information likely to have a bearing on the market are government tariffs, import duties and sector subsidies. Even in free market areas, many aspects of economies are regarded as being of strategic importance and governments frequently strive to preserve national interests wherever possible by fixing prices of imposing import tariffs. Should import tariffs be relaxed of prices allowed to move in line with supply and demand, there will be an appreciable change in the market conditions. National companies, for instance, might suddenly find themselves uncompetitive. With cheaper imports, the balance between cement grinding and clinker production requirements could change quite dramatically. It would be up t the government to accommodate these changes, but one of the principle tasks of the consultant is to anticipate them.
This last point highlights what is perhaps the single most important yet difficult to determine aspect of a market study: competitor reaction. Knowing of others investment plans, government licensing, likely dates of completion, principle contractors involved and distribution partners is difficult and time consuming, but it is not enough. Competitors are not just nationals of those who have historically sold their product through the same predictable channels of distribution. There are an increasing number of companies who would like to reduce dependence on suppliers by vertically integrating their operations. This could entail building their own plant or developing their own deep water terminal to import cement directly. Others might decide to diversify into selling, for example, ready missed concrete. Some large users might be on verge of entering into long term agreements with one company or looking to buy form further afield. The combinations are numerous but it is up to the company investing in expensive plant and machinery to understand its customers and convince both itself and the investors that it really does have the best view of the market.
Raw materials proving
The volume and quality of the raw material deposits have to be established with accuracy. A wide ranging search for raw materials may start with desk research and consultation with National Geological Survey data and available geological mapping. The search will include examination of aerial photography records and satellite imagery e.g. Landsat or SPOT.
The desk research is followed buy site visits to the proposed location by geologists who take the study a step forward by making on-site examinations of previously identified geological horizons and outcrops. The first samples are taken by channeling from promising outcrops, road cuttings, recent excavations or from purpose excavated test pits. Field testing of the samples is required to provide an initial indication of the calcium carbonate, silica, alumina and iron content of the deposit. The testing is simple, rapid and economical and the geologist can adjust the field investigations and maximize the recovery of useful information.
The most promising samples are chemically analysed in testing laboratories and when sufficient data has been obtained in terms of chemical quality, and the probable volume established, a decision to mount a full drilling campaign can be made.
The primary raw material or limestone, is core drilled and careful records of the geological progression is made as the cores are recovered, recorded and laid sequentially in the core boxes,(Figure 2). Individual and composite samples are taken from the cores and sent to laboratories experienced in the testing of cement raw materials. In order to minimize drilling costs is essential that the initial results of the first borehole are analysed rapidly and the results known in order to make further decisions on location, angle and direction of subsequent boreholes.
The information obtained from the chemical analyses and the geological record derived from the cores in then used to establish the geological structure and the volume of the deposit. The optimum quarry developments are then developed.
The secondary raw materials, clays or shales, may be proven by means of auger drilling of by test pit excavation using mobile hydraulic excavators or in some cases by hand excavation. These materials are similarly recorded and chemically analysed as for the limestones.
Using the chemical analysis of the raw material, computerized raw mix designs can be carried out. The in-house program used has several facilities which can be called upon. Firstly, all the necessary standard equations which must be satisfied for lime saturation, silica ratio, alumina ratio, hydraulic modulus, etc., are built into the program. Secondly, the mix design can be refined by adjusting the compound composition and observing the effect upon the standard ratios. Finally, cost factors can be added to the raw materials to obtain the optimum raw mix which minimizes the most expensive raw materials, but satisfies the above criteria.
Process design
The optimum process route for a specific plant is dependent upon a number of factors including the physical and chemical nature of the raw material deposits. The selection of plant and machinery is made based on the following factors”
Disposition of the raw material deposits.
Moisture content and other physical properties of the raw materials.
Level of undesirable chemical elements.
Mineralogy (particularly the content and size of silica).
Abrasiveness, grindability and the burnability of the raw materials.
Fuel types and relative costs.
Environmental protection requirements.
Electrical power availability, cost and energy efficiency requirements.
Site topography and congstraints.
Market constraints.
Labour and maintenance constraints.
The disposition of the raw materials in terms of dip and strike and physical location dictate how the primary and secondary raw material quarries are opened up, how they are to be worked and how the access roads are to be developed. The geological method of deposition and hardness of the raw materials will also determine how the quarry is to be planned and the methods of extraction determined.
The moisture content of the raw materials and the change in their characteristics as the moisture content alters has an important effect upon the choice of the primary crusher and storage systems. The moisture content has even greater implications when considering the raw milling system to be proposed in conjunction with the optimum temperature of preheater exit gas. A balance has to be struck between the requirements of the kiln system, the number of cyclone stages that can be used, and the heat requirements of the raw mill for raw materials drying.
The level of undesirable chemical elements in the raw materials, such as potassium, sodium, magnesia, chlorides and sulfur requires careful consideration in the selection of the type of kiln system. The varying levels of impurity elements in conjunction with the sulfur in the raw material and possible additional sulfur intake from the kiln fuel, lead to the necessary decisions to be made relating to the acceptance and sizing of a bypass system.
The mineralogy can vary greatly among raw materials in different countries. The method of deposition and the occurrence of the chemical elements in each of the raw materials can have a marked effect on the characteristics of combination in the kiln burning process. Notably this leads to variations in kiln fuel conditions. Predictions upon how the raw-materials will behave when combined in the necessary proportions to obtain a commercial cement, are based upon laboratory burning and grinding tests conducted as part of the feasibility study.
Energy and fuel usage are two key matters high on the agenda of all potential and existing cement plant operators. The cement industry has always been very conscious of making the maximum use of heat energy, and to this end heat transfer from the kiln gases to the raw materials, of from the hot clinker to the combustion air, has always been utilized.
Today more than ever the efficient use of energy and fuel is sought affair and a range of plant and equipments available for consideration. Technical economy of scale is also an important factor and where the market justify large capacity plant, correspond with reductions in the cost of products are achieved.
Energy consumption is be reduced through the use of roll-milling systems for raw meal in plant of tube mills, high efficiency separators in both the raw milling and cement milling departments, low pressure drop cyclones in the preheater of the burning process, and by the preheater of high pressure grinding rolls, and recent introduction of the horizontal roller mill, the so-called Horomill. The selection of the optimum planning processes ensures that the KWh/h electrical power consumption minimised.
Fuel consumption is reduced the introduction of efficient cyclones construction with heat resistant tubes and an increase in the number of stages of preheater to mount maximum use of the hot gases leaving from the kiln. Fuel consumption is also siderable affected by the designation ancillary plant such as the kiln separators, gas ducting, kiln burner, flow control valves and instrumentation.
Another recent development is the transfer of all the hot exhausted gases form the clinker cooler back onto the raw mill, thus saving on the heat required for drying the raw material. This arrangement also has the acute advantage of reducing the capital of the plant by the elimination of a cipitator or other clinker cooler collection system and its associating equipment.
收藏