2、 ( ).
A.原點(diǎn)在圓上 B.原點(diǎn)在圓外
C.原點(diǎn)在圓內(nèi) D.不確定
解析 將圓的一般方程化為標(biāo)準(zhǔn)方程(x+a)2+(y+1)2=2a,因?yàn)?0,所以原點(diǎn)在圓外.
答案 B
3.圓(x+2)2+y2=5關(guān)于直線y=x對(duì)稱的圓的方程為 ( ).
A.(x-2)2+y2=5 B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5
解析 由題意知所求圓的圓心坐標(biāo)為(0,-2),所以所求圓的方程為x2+
3、(y+2)2=5.
答案 D
4.(2013鄭州模擬)動(dòng)點(diǎn)P到點(diǎn)A(8,0)的距離是到點(diǎn)B(2,0)的距離的2倍,則動(dòng)點(diǎn)
2 / 10
P的軌跡方程為 ( ).
A.x2+y2=32 B.x2+y2=16
C.(x-1)2+y2=16 D.x2+(y-1)2=16
解析 設(shè)P(x,y),則由題意可得:2=,化簡(jiǎn)整理得x2+y2=16,故選B.
答案 B
二、填空題(每小題5分,共10分)
5.以A(1,3)和B(3,5)為直徑兩端點(diǎn)的圓的標(biāo)準(zhǔn)方程為_(kāi)_______.
解析 由中點(diǎn)坐標(biāo)公式得AB的中點(diǎn)即圓的圓心坐標(biāo)為
4、(2,4),再由兩點(diǎn)間的距離公式得圓的半徑為=,故圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-4)2=2.
答案 (x-2)2+(y-4)2=2
6.已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則圓C上各點(diǎn)到l的距離的最小值為_(kāi)_______.
解析 由題意得C上各點(diǎn)到直線l的距離的最小值等于圓心(1,1)到直線l的距離減去半徑,即-=.
答案
三、解答題(共25分)
7.(12分)求適合下列條件的圓的方程:
(1)圓心在直線y=-4x上,且與直線l:x+y-1=0相切于點(diǎn)P(3,-2);
(2)過(guò)三點(diǎn)A(1,12),B(7,10),C(-9,2).
解 (1)
5、法一 設(shè)圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,
則有
解得a=1,b=-4,r=2.
∴圓的方程為(x-1)2+(y+4)2=8.
法二 過(guò)切點(diǎn)且與x+y-1=0垂直的直線為y+2=x-3,與y=-4x聯(lián)立可求得圓心為(1,-4).
∴半徑r==2,
∴所求圓的方程為(x-1)2+(y+4)2=8.
(2)法一 設(shè)圓的一般方程為x2+y2+Dx+Ey+F=0,
則
解得D=-2,E=-4,F(xiàn)=-95.
∴所求圓的方程為x2+y2-2x-4y-95=0.
法二 由A(1,12),B(7,10),
得AB的中點(diǎn)坐標(biāo)為(4,11),kAB=-,
則AB的垂
6、直平分線方程為3x-y-1=0.
同理得AC的垂直平分線方程為x+y-3=0.
聯(lián)立得
即圓心坐標(biāo)為(1,2),半徑r==10.
∴所求圓的方程為(x-1)2+(y-2)2=100.
8.(13分)已知以點(diǎn)P為圓心的圓經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點(diǎn)C和D,且|CD|=4.
(1)求直線CD的方程;
(2)求圓P的方程.
解 (1)直線AB的斜率k=1,AB的中點(diǎn)坐標(biāo)為(1,2),
∴直線CD的方程為y-2=-(x-1),即x+y-3=0.
(2)設(shè)圓心P(a,b),則由P在CD上得a+b-3=0. ①
又直徑|CD|=4,∴|
7、PA|=2,
∴(a+1)2+b2=40, ②
由①②解得或
∴圓心P(-3,6)或P(5,-2),
∴圓P的方程為(x+3)2+(y-6)2=40或(x-5)2+(y+2)2=40.
B級(jí) 能力突破(時(shí)間:30分鐘 滿分:45分)
一、選擇題(每小題5分,共10分)
1.(2013東莞調(diào)研)已知圓C:x2+y2+mx-4=0上存在兩點(diǎn)關(guān)于直線x-y+3=0對(duì)稱,則實(shí)數(shù)m的值為 ( ).
A.8 B.-4 C.6 D.無(wú)法確定
解析 圓上存在關(guān)于直線x-y+3
8、=0對(duì)稱的兩點(diǎn),則x-y+3=0過(guò)圓心,即-+3=0,∴m=6.
答案 C
2.圓心為C的圓與直線l:x+2y-3=0交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),且滿足=0,則圓C的方程為 ( ).
A.2+(y-3)2= B.2+(y+3)2=
C.2+(y-3)2= D.2+(y+3)2=
解析 法一 ∵圓心為C,
∴設(shè)圓的方程為2+(y-3)2=r2.
設(shè)P(x1,y1),Q(x2,y2).
由圓方程與直線l的方程聯(lián)立得:5x2+10x+10-4r2=0,
∴x1+x2=-2,x1x2=.
由=0,得x1x2+y1y2=0,即:
x1x
9、2-(x1+x2)+=+=0,
解得r2=,經(jīng)檢驗(yàn)滿足判別式Δ>0.
故圓C的方程為2+(y-3)2=.
法二 ∵圓心為C,
∴設(shè)圓的方程為2+(y-3)2=r2,
在所給的四個(gè)選項(xiàng)中只有一個(gè)方程所寫(xiě)的圓心是正確的,即2+(y-3)2=,故選C.
答案 C
二、填空題(每小題5分,共10分)
3.已知平面區(qū)域恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋,則圓C的方程為_(kāi)_______.
解析 由題意知,此平面區(qū)域表示的是以O(shè)(0,0),P(4,0),Q(0,2)所構(gòu)成的三角形及其內(nèi)部,所以覆蓋它的且面積最小的圓是其外接圓,又△OPQ為直角三角形
10、,故其圓心為斜邊PQ的中點(diǎn)(2,1),半徑為=,∴圓C的方程為(x-2)2+(y-1)2=5.
答案 (x-2)2+(y-1)2=5
4.已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(-1,0),B(1,0),點(diǎn)P是圓上的動(dòng)點(diǎn),則d=|PA|2+|PB|2的最大值為_(kāi)_______,最小值為_(kāi)_______.
解析 設(shè)點(diǎn)P(x0,y0),則d=(x0+1)2+y+(x0-1)2+y=2(x+y)+2,欲求d的最值,只需求u=x+y的最值,即求圓C上的點(diǎn)到原點(diǎn)的距離平方的最值.圓C上的點(diǎn)到原點(diǎn)的距離的最大值為6,最小值為4,故d的最大值為74,最小值為34.
答案 74 34
三、解
11、答題(共25分)
5.(12分)(2013大連模擬)已知圓M過(guò)兩點(diǎn)C(1,-1),D(-1,1),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
解 (1)設(shè)圓M的方程為(x-a)2+(y-b)2=r2(r>0),
根據(jù)題意得:
解得a=b=1,r=2,
故所求圓M的方程為(x-1)2+(y-1)2=4.
(2)因?yàn)樗倪呅蜳AMB的面積
S=S△PAM+S△PBM=|AM||PA|+|BM||PB|,
又|AM|=|BM|=2,|PA|=|PB|
12、,所以S=2|PA|,
而|PA|==,
即S=2.
因此要求S的最小值,只需求|PM|的最小值即可,
即在直線3x+4y+8=0上找一點(diǎn)P,使得|PM|的值最小,
所以|PM|min==3,
所以四邊形PAMB面積的最小值為
S=2=2=2.
6.(13分)(2013南昌模擬)已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對(duì)稱.
(1)求圓C的方程;
(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求的最小值.
解 (1)設(shè)圓心C(a,b),則解得
則圓C的方程為x2+y2=r2,將點(diǎn)P的坐標(biāo)代入得r2=2,
故圓C的方程為x2+y2=2.
(2)設(shè)Q(x,y),則x2+y2=2,且=(x-1,y-1)(x+2,y+2)=x2+y2+x+y-4=x+y-2,
令x=cos θ,y=sin θ,
∴=x+y-2=(sin θ+cos θ)-2
=2sin-2,
所以的最小值為-4.
特別提醒:教師配贈(zèng)習(xí)題、課件、視頻、圖片、文檔等各種電子資源見(jiàn)《創(chuàng)新設(shè)計(jì)高考總復(fù)習(xí)》光盤(pán)中內(nèi)容.
希望對(duì)大家有所幫助,多謝您的瀏覽!