《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué) 一輪復(fù)習(xí)學(xué)案訓(xùn)練課件北師大版理科: 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第4節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入學(xué)案 理 北師大版(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
第四節(jié) 數(shù)系的擴(kuò)充與復(fù)數(shù)的引入
[考綱傳真] (教師用書獨(dú)具)1.理解復(fù)數(shù)的概念,理解復(fù)數(shù)相等的充要條件.2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.3.能進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算,了解兩個具體復(fù)數(shù)相加、減的幾何意義.
(對應(yīng)學(xué)生用書第77頁)
[基礎(chǔ)知識填充]
1.復(fù)數(shù)的有關(guān)概念
(1)復(fù)數(shù)的概念:形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中a,b分別是它的實(shí)部和虛部.若b=0,則a+bi為實(shí)數(shù),若b≠0,則a+bi為虛數(shù),若a=0且b≠0,則a+bi為純虛數(shù).
(2)復(fù)數(shù)相等:a+bi=c+di?a=c,b=d(a,b,c,d∈R).
(3)共軛復(fù)數(shù):a+bi與c+d
2、i共軛?a=c,b=-d(a,b,c,d∈R).
(4)復(fù)數(shù)的模:向量的模r叫作復(fù)數(shù)z=a+bi的模,即|z|=|a+bi|=.
2.復(fù)數(shù)的幾何意義
復(fù)數(shù)z=a+bi復(fù)平面內(nèi)的點(diǎn)Z(a,b) 平面向量=(a,b).
3.復(fù)數(shù)的運(yùn)算
(1)復(fù)數(shù)的加、減、乘、除運(yùn)算法則
設(shè)z1=a+bi,z2=c+di(a,b,c,d∈R),則
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②減法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i;
④除法:===+i(
3、c+di≠0).
(2)復(fù)數(shù)加法的運(yùn)算定律
復(fù)數(shù)的加法滿足交換律、結(jié)合律,即對任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).
[基本能力自測]
1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“”)
(1)方程x2+x+1=0沒有解.( )
(2)復(fù)數(shù)z=a+bi(a,b∈R)中,虛部為bi.( )
(3)復(fù)數(shù)中有相等復(fù)數(shù)的概念,因此復(fù)數(shù)可以比較大?。? )
(4)在復(fù)平面內(nèi),原點(diǎn)是實(shí)軸與虛軸的交點(diǎn).( )
(5)復(fù)數(shù)的模實(shí)質(zhì)上就是復(fù)平面內(nèi)復(fù)數(shù)對應(yīng)的點(diǎn)到原點(diǎn)的距離,也就是復(fù)數(shù)對應(yīng)的向量的模.( )
[
4、答案] (1) (2) (3) (4)√ (5)√
2. (教材改編)如圖441,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z,則圖中表示z的共軛復(fù)數(shù)的點(diǎn)是( )
圖441
A.A B.B
C.C D.D
B [共軛復(fù)數(shù)對應(yīng)的點(diǎn)關(guān)于實(shí)軸對稱.]
3.(20xx全國卷Ⅲ)復(fù)平面內(nèi)表示復(fù)數(shù)z=i(-2+i)的點(diǎn)位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
C [∵z=i(-2+i)=-1-2i,∴復(fù)數(shù)z=-1-2i所對應(yīng)的復(fù)平面內(nèi)的點(diǎn)為Z(-1,-2),位于第三象限.
故選C.]
4.(20xx全國卷Ⅱ)=( )
A.1+2i B.1-2i
5、C.2+i D.2-i
D [===2-i.
故選D.]
5.設(shè)i是虛數(shù)單位,若復(fù)數(shù)(2+ai)i的實(shí)部與虛部互為相反數(shù),則實(shí)數(shù)a的值為________.
2 [因?yàn)?2+ai)i=-a+2i,又其實(shí)部與虛部互為相反數(shù),所以-a+2=0,即a=2.]
(對應(yīng)學(xué)生用書第77頁)
復(fù)數(shù)的有關(guān)概念
(1)(20xx合肥一檢)設(shè)i為虛數(shù)單位,復(fù)數(shù)z=的虛部是( )
A. B.-
C.1 D.-1
(2)(20xx全國卷Ⅰ)設(shè)有下面四個命題:
p1:若復(fù)數(shù)z滿足∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1,z2滿足z
6、1z2∈R,則z1=2;
p4:若復(fù)數(shù)z∈R,則∈R.
其中的真命題為( )
A.p1,p3 B.p1,p4
C.p2,p3 D.p2,p4
(1)B (2)B [(1)復(fù)數(shù)z===-i,則z的虛部為-,故選B.
(2)設(shè)z=a+bi(a,b∈R),z1=a1+b1i(a1,b1∈R),z2=a2+b2i(a2,b2∈R).
對于p1,若∈R,即=∈R,則b=0?z=a+bi=a∈R,所以p1為真命題.
對于p2,若z2∈R,即(a+bi)2=a2+2abi-b2∈R,則ab=0.
當(dāng)a=0,b≠0時,z=a+bi=bi?R,所以p2為假命題.
對于p3,若z1z2∈R,
7、即(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(a1b2+a2b1)i∈R,則a1b2+a2b1=0.而z1=2,即a1+b1i=a2-b2i?a1=a2,b1=-b2.因?yàn)閍1b2+a2b1=0a1=a2,b1=-b2,所以p3為假命題.
對于p4,若z∈R,即a+bi∈R,則b=0?=a-bi=a∈R,所以p4為真命題.故選B.]
[規(guī)律方法] 與復(fù)數(shù)概念相關(guān)問題的求解方法
(1)復(fù)數(shù)的概念問題都可以轉(zhuǎn)化為復(fù)數(shù)的實(shí)部與虛部應(yīng)該滿足的條件問題,只需把復(fù)數(shù)化為代數(shù)形式,列出實(shí)部和虛部滿足的方程(不等式)組即可.
(2)解決復(fù)數(shù)模的問題可以根據(jù)模的性質(zhì)把積、商的模轉(zhuǎn)化為模
8、的積、商.
易錯警示:解題時一定要先看復(fù)數(shù)是否為a+bi(a,b∈R)的形式,以確定實(shí)部和虛部.
[跟蹤訓(xùn)練] (1)(20xx全國卷Ⅲ)若z=1+2i,則=( )
A.1 B.-1
C.i D.-i
(2)(20xx長沙模擬(二))已知a是實(shí)數(shù),是純虛數(shù),則a=( )
A. B.-
C.1 D.-1
(1)C (2)A [(1)因?yàn)閦=1+2i,則=1-2i,所以z=(1+2i)(1-2i)=5,則==i.故選C.
(2)復(fù)數(shù)==-i是純虛數(shù),則=0且-≠0,解得a=,故選A.]
復(fù)數(shù)的幾何意義
(1)(20xx石家莊質(zhì)檢(二))在復(fù)平面中,復(fù)數(shù)對應(yīng)的
9、點(diǎn)在( )
【導(dǎo)學(xué)號:79140161】
A.第一象限 B.第二象限
C.第三象限 D.第四象限
(2)(20xx全國卷Ⅱ)已知z=(m+3)+(m-1)i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第四象限,則實(shí)數(shù)m的取值范圍是( )
A.(-3,1) B.(-1,3)
C.(1,+∞) D.(-∞,-3)
(1)D (2)A [(1)復(fù)數(shù)===-i,其在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,位于第四象限,故選D.
(2)由題意知即-3<m<1.故實(shí)數(shù)m的取值范圍為(-3,1).]
[規(guī)律方法] 對復(fù)數(shù)幾何意義的理解及應(yīng)用,(1)復(fù)數(shù)z、復(fù)平面上的點(diǎn)Z及向量相互聯(lián)系,即z=a+bi(a,b∈R)?Z(a,b)
10、?.,(2)由于復(fù)數(shù)、點(diǎn)、向量之間建立了一一對應(yīng)的關(guān)系,因此可把復(fù)數(shù)、向量與解析幾何聯(lián)系在一起,解題時可運(yùn)用數(shù)形結(jié)合的方法,使問題的解決更加直觀.
[跟蹤訓(xùn)練] (1)若復(fù)數(shù)z=(a-1)+3i(a∈R)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在直線y=x+2上,則a的值等于( )
A.1 B.2 C.5 D.6
(2)設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,z1=2+i,則z1z2=( )
A.-5 B.5
C.-4+i D.-4-i
(1)B (2)A [(1)復(fù)數(shù)z=(a-1)+3i在復(fù)平面內(nèi)對應(yīng)的點(diǎn)(a-1,3)在直線y=x+2上,3=a-1+2,a=2,故選B
11、.
(2)∵z1=2+i在復(fù)平面內(nèi)的對應(yīng)點(diǎn)的坐標(biāo)為(2,1),又z1與z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于虛軸對稱,則z2的對應(yīng)點(diǎn)的坐標(biāo)為(-2,1)即z2=-2+i,
∴z1z2=(2+i)(-2+i)=i2-4=-5.]
復(fù)數(shù)的代數(shù)運(yùn)算
(1)(20xx廣州綜合測試(二))若復(fù)數(shù)z滿足(3+4i-z)i=2+i,則z=( )
A.4+6i B.4+2i
C.-4-2i D.2+6i
(2)(20xx石家莊一模)若z是復(fù)數(shù),z=,則z=( )
A. B.
C.1 D.
(1)D (2)D [(1)由題意得3+4i-z===1-2i,所以z=2+6i,故選D.
(
12、2)因?yàn)閦===--i,所以=-+i,所以z==,故選D.]
[規(guī)律方法] 復(fù)數(shù)代數(shù)運(yùn)算問題的求解方法
(1)復(fù)數(shù)的加法、減法、乘法運(yùn)算可以類比多項(xiàng)式運(yùn)算,除法關(guān)鍵是分子分母同乘以分母的共軛復(fù)數(shù),注意要把i的冪寫成最簡形式.
(2)記住以下結(jié)論,可提高運(yùn)算速度
①(1i)2=2i;②=i;③=-i;④-b+ai=i(a+bi);⑤i4n=1;i4n+1=i;i4n+2=-1; i4n+3=-i(n∈N).
[跟蹤訓(xùn)練] (1)已知i是虛數(shù)單位,+=________.
【導(dǎo)學(xué)號:79140162】
(2)已知a,b∈R,i是虛數(shù)單位,若(1+i)(1-bi)=a,則的值為________.
(1)1+i (2)2 [(1)原式=+
=i8+=i8+i1 009
=1+i4252+1=1+i.
(2)∵(1+i)(1-bi)=1+b+(1-b)i=a,又a,b∈R,
∴1+b=a且1-b=0,得a=2,b=1,∴=2.]