《新教材高中數(shù)學(xué) 1.2.2充要條件習(xí)題課練習(xí) 北師大版選修11》由會(huì)員分享,可在線閱讀,更多相關(guān)《新教材高中數(shù)學(xué) 1.2.2充要條件習(xí)題課練習(xí) 北師大版選修11(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
(新教材)北師大版精品數(shù)學(xué)資料
【成才之路】高中數(shù)學(xué) 1.2.2充要條件習(xí)題課練習(xí) 北師大版選修1-1
一、選擇題
1.(2013·福建理,2)已知集合A={1,a},B={1,2,3},則“a=3”是“A?B”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
[答案] A
[解析] 本題考查了充要條件的判斷.
當(dāng)a=3時(shí),A={1,3},故A?B,若A?B?a=2或a=3,故為充分不必要條件.
2.設(shè)集合M={x|x>2},P={x|x<3},那么“x∈M或x∈P”是“x∈(M∩P)”的( )
2、
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
[答案] B
[解析] 先分別寫(xiě)出適合條件的“x∈M或x∈P”和“x∈(M∩P)”的x的范圍,再根據(jù)充要條件的有關(guān)概念進(jìn)行判斷.
由已知可得x∈M或x∈P即x∈R,x∈(M∩P)即2<x<3,
∴2<x<3?x∈R,但x∈R2<x<3,
∴“x∈M或x∈P”是“x∈(M∩P)”的必要不充分條件,故應(yīng)選B.
3.已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是( )
A.x=- B.x=-1
C.x=5 D.x=0
[答案] D
[解
3、析] 本題考查了兩向量垂直的坐標(biāo)運(yùn)算.
∵a=(x-1,2),b=(2,1),a⊥b,
∴a·b=(x-1,2)·(2,1)=2(x-1)+2=2x=0,即x=0.
a與b垂直和共線對(duì)應(yīng)的坐標(biāo)之間的關(guān)系不要混淆.
4.(2015·陜西文,6)“sin α=cos α”是“cos 2α=0”的( )
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
[答案] A
[解析] cos 2α=0?cos2α-sin2 α=0?(cos α-sin α)(cos α+sin α)=0,所以sin α=cos α或sin α
4、=-cos α,故答案選A.
5.設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+2y+4=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
[答案] C
[解析] 若l1∥l2,則2a-2=0,∴a=1,故選C.
6.關(guān)于x的方程2(k+1)x2+4kx+3k-2=0兩根同號(hào)的充要條件是( )
A.-2≤k≤1 B.-2<k<-1
C.-2≤k<-1或<k≤1 D.k<-1或k≥
[答案] C
[解析] 方程2(k+1)x2+4kx+3k-2=0兩根同號(hào)的充要條
5、件是:
??
?-2≤k<-1或<k≤1.
二、填空題
7.“m=1”是“函數(shù)y=xm2-4m+5是二次函數(shù)”的________條件.
[答案] 充分不必要
[解析] 當(dāng)m=1時(shí),y=x2是二次函數(shù).當(dāng)y=x m2-4m+5是二次函數(shù)時(shí),m2-4m+5=2,即m2-4m+3=0,
∴m=1或m=3.所以是充分不必要條件.
8.“a=b”是“直線y=x+2與圓(x-a)2+(y-b)2=2相切”的________條件.
[答案] 充分不必要
[解析] 圓心為(a,b),半徑r=.若a=b,有圓心(a,b)到直線y=x+2的距離d=r,所以直線與圓相切.若直線與
6、圓相切,有=,則a=b或a-b=-4,所以“a=b”是“直線與圓相切”的充分不必要條件.
三、解答題
9.求不等式(a2-3a+2)x2+(a-1)x+2>0的解集是R的充要條件.
[答案] a≤1或a>
[解析] 討論二次項(xiàng)系數(shù):
(1)由a2-3a+2=0,得a=1或a=2.
當(dāng)a=1時(shí),原不等式為2>0恒成立,∴a=1適合.
當(dāng)a=2時(shí),原不等式為x+2>0,即x>-2,它的解集不是R,∴a=2不符合.
(2)當(dāng)a2-3a+2≠0時(shí),必須有
,
解得,
∴a<1或a>.
綜上可知,滿足題意的充要條件是a的取值范圍是a≤1或
7、a>.
10.若函數(shù)y=(a2+4a-5)x2-4(a-1)x+3的圖像全在x軸的上方,則使結(jié)論成立的充分必要條件是什么?
[答案] 1≤a<19
[解析] 函數(shù)y=(a2+4a-5)x2-4(a-1)x+3的圖像在x軸的上方.
若函數(shù)是一次函數(shù),則∴a=1.
若函數(shù)是二次函數(shù),則
解得1<a<19.
由以上所知,若函數(shù)y=(a2+4a-5)x2-4(a-1)x+3的圖像全在x軸上方,則1≤a<19.
反之,若1≤a<19,由以上推導(dǎo)知函數(shù)的圖像在x軸上方.
綜上所述,函數(shù)y=(a2+4a-5)x2-4(a-1)x+3的圖像全在x軸上方
8、的充要條件是1≤a<19.
1.設(shè){an}是等比數(shù)列,則“a1<a2<a3”是“數(shù)列{an}是遞增數(shù)列”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
[答案] C
[解析] 若a1<a2<a3,則a1<a1q<a1q2,若a1>0,則q>1,此時(shí)為遞增數(shù)列,若a1<0,則0<q<1,同樣為遞增數(shù)列,故充分性成立,必要性顯然成立.
2.若命題甲是命題乙的充分不必要條件,命題丙是命題乙的必要不充分條件,命題丁是命題丙的充要條件,則命題丁是命題甲的( )
9、
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件
[答案] B
[解析] 由條件知,甲?乙?丙?丁,
∴甲?丁且丁甲,故選B.
3.(2014·開(kāi)灤二中期中)已知a、b是實(shí)數(shù),則“()a<()b”是“l(fā)og3a>log3b”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充要條件
D.既不充分也不必要條件
[答案] B
[解析] 若a、b中有非正數(shù),則雖有()a<()b成立,但log3a>log3b不成立,所以()a<()b不是log3a>log3b的充分條件;若log3a&g
10、t;log3b,根據(jù)函數(shù)y=log3x在(0,+∞)上是增函數(shù),有a>b,又y=()x在R上是減函數(shù),所以()a<()b,所以()a<()b是log3a>log3b的必要條件,選B.
4.命題甲:“a、b、c成等差數(shù)列”,命題乙:“+=2”,則甲是乙的( )
A.必要不充分條件
B.充分不必要條件
C.充要條件
D.既不充分也不必要條件
[答案] A
[解析] ∵a=b=c=0,則a、b、c也成等差數(shù)列,但推不出+=2;
反過(guò)來(lái)由+=2?a+c=2b,即a、b、c成等差數(shù)列.
綜上所述,“a、b、c成等差數(shù)列”是“+=2”的必要不充分條件,故選A.
11、
二、填空題
5.“ax2+bx+c=0(a≠0)有實(shí)根”是“ac<0”的________條件.
[答案] 必要條件
[解析] ax2+bx+c=0(a≠0)有實(shí)根?b2-4ac≥0?b2≥4acac<0.
反之,ac<0?b2-4ac>0?ax2+bx+c=0(a≠0)有實(shí)根.
所以“ax2+bx+c=0(a≠0)有實(shí)根”是“ac<0”的必要條件.
6.命題p:|x|<a(a>0),命題q:x2-x-6<0,若p是q的充分條件,則a的取值范圍是________,若p是q的必要條件,則a的取值范圍是________.
[答案]
12、a≤2 a≥3
[解析] p:-a<x<a,q:-2<x<3,
若p是q的充分條件,則(-a,a)?(-2,3),
∴,∴a≤2,
若p是q的必要條件,則(-2,3)?(-a,a),
∴,∴a≥3.
三、解答題
7.方程mx2+(2m+3)x+1-m=0有一個(gè)正根和一個(gè)負(fù)根的充要條件是什么?
[答案] m>1或m<0
[解析] 由題意知
∴m>1或m<0,即所求充要條件是m>1或m<0.
8.不等式x2-2mx-1>0對(duì)一切1≤x≤3都成立,求m的取值范圍.
[答案] m<0
[解析] 令f(x)=x2-2mx-1
要使x2-2mx-1>0對(duì)一切1≤x≤3都成立,
∵f(x)的圖像開(kāi)口向上,且f(0)=-1<0(如圖),
∴f(1)>0,即1-2m-1>0,∴m<0.
∴m的取值范圍是m<0.