歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

理數(shù)北師大版練習(xí):第三章 第六節(jié) 簡(jiǎn)單的三角恒等變形 Word版含解析

  • 資源ID:42587984       資源大?。?span id="x5jp7b7" class="font-tahoma">88KB        全文頁(yè)數(shù):9頁(yè)
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

理數(shù)北師大版練習(xí):第三章 第六節(jié) 簡(jiǎn)單的三角恒等變形 Word版含解析

課時(shí)作業(yè) A組——基礎(chǔ)對(duì)點(diǎn)練 1.已知cos(-2θ)=-,則sin(+θ)的值等于(  ) A.        B. C.- D. 解析:因?yàn)閏os(-2θ)=cos(2θ-)=-cos(2θ-+π)=-cos[2(θ+)]= -,即cos[2(θ+)]=,所以sin2(θ+)==,所以sin(θ+)=,故選B. 答案:B 2.(20xx開封模擬)設(shè)a=cos 6-sin 6,b=,c= ,則(  ) A.c<b<a B.a(chǎn)<b<c C.a(chǎn)<c<b D.b<c<a 解析:∵a=sin 30cos 6-cos 30sin 6=sin 24,b=tan 26,c=sin 25, ∴a<c<b. 答案:C 3.為了得到函數(shù)y=sin 3x+cos 3x的圖像,可以將函數(shù)y=cos 3x的圖像 (  ) A.向右平移個(gè)單位 B.向右平移個(gè)單位 C.向左平移個(gè)單位 D.向左平移個(gè)單位 解析:∵y=sin 3x+cos 3x=cos=cos, ∴將y=cos 3x的圖像向右平移個(gè)單位即可得到y(tǒng)=cos的圖像,故選A. 答案:A 4.已知f(x)=2sin2x+2sin xcos x,則f(x)的最小正周期和一個(gè)單調(diào)遞減區(qū)間分別為(  ) A.2π,[,] B.π,[,] C.2π,[-,] D.π,[-,] 解析:f(x)=2sin2x+2sin xcos x=1-cos 2x+sin 2x=sin(2x-)+1,∴T==π,由+2kπ≤2x-≤+2kπ(k∈Z)得+kπ≤x≤+kπ(k∈Z),令k=0得f(x)在[,]上單調(diào)遞減,故選B. 答案:B 5.函數(shù)y=cos 2x+2sin x的最大值為(  ) A. B.1 C. D.2 解析:y=cos 2x+2sin x=1-2sin2x+2sin x=-22+,因?yàn)椋?≤sin x≤1,所以當(dāng)sin x=時(shí),函數(shù)取最大值,故ymax=. 答案:C 6.已知2cos2x+sin 2x=Asin(ωx+φ)+b(A>0),則A= ,b= . 解析:由于2cos2x+sin 2x=1+cos 2x+sin 2x=sin(2x+)+1,所以A=,b=1. 答案: 1 7.化簡(jiǎn):= . 解析:===4sin α. 答案:4sin α 8.已知函數(shù)f(x)=(sin x+cos x)sin x,x∈R,則f(x)的最小值是 . 解析:f(x)=sin2x+sin xcos x=+sin 2x=sin+,當(dāng)sin=-1時(shí),f(x)min=. 答案: 9.已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f()=0,其中a∈R,θ∈(0,π). (1)求a,θ的值; (2)若f()=-,α∈(,π),求sin(α+)的值. 解析:(1)因?yàn)閒(x)=(a+2cos2x)cos(2x+θ)是奇函數(shù),而y1=a+2cos2x為偶函數(shù),所以y2=cos(2x+θ)為奇函數(shù),由θ∈(0,π),得θ=,所以f(x)=-sin 2x(a+2cos2x), 由f()=0得-(a+1)=0,即a=-1. (2)由(1)得f(x)=-sin 4x, 因?yàn)閒()=-sin α=-,即sin α=, 又α∈(,π),從而cos α=-, 所以sin(α+)=sin αcos +cos αsin =. 10.已知a=(sin x,-cos x),b=(cos x,cos x),函數(shù)f(x)=ab+. (1)求f(x)的最小正周期,并求其圖像對(duì)稱中心的坐標(biāo); (2)當(dāng)0≤x≤時(shí),求函數(shù)f(x)的值域. 解析:(1)因?yàn)閒(x)=sin xcos x-cos2x+ =sin 2x-(cos 2x+1)+ =sin 2x-cos 2x=sin, 所以f(x)的最小正周期為π,令sin=0, 得2x-=kπ,∴x=π+,k∈Z, 故所求對(duì)稱中心的坐標(biāo)為(k∈Z). (2)∵0≤x≤,∴-≤2x-≤, ∴-≤sin≤1,故f(x)的值域?yàn)? B組——能力提升練 1.(20xx石家莊質(zhì)檢)若函數(shù)f(x)=sin(2x+θ)+cos(2x+θ)(0<θ<π)的圖像關(guān)于(,0)對(duì)稱,則函數(shù)f(x)在[-,]上的最小值是(  ) A.-1 B.- C.- D.- 解析:f(x)=sin(2x+θ)+cos(2x+θ)=2sin(2x+θ+),則由題意,知f()=2sin(π+θ+)=0,又0<θ<π,所以θ=,所以f(x)=-2sin 2x,f(x)在[-,]上是減函數(shù),所以函數(shù)f(x)在[-,]上的最小值為f()=-2sin=-,故選B. 答案:B 2.函數(shù)f(x)=(1+cos 2x)sin2x(x∈R)是(  ) A.最小正周期為π的奇函數(shù) B.最小正周期為的奇函數(shù) C.最小正周期為π的偶函數(shù) D.最小正周期為的偶函數(shù) 解析: f(x)=(1+cos 2x)(1-cos 2x)=(1-cos22x)=sin22x=(1-cos 4x),f(-x)=(1-cos 4x)=f(x),因此函數(shù)f(x)是最小正周期為的偶函數(shù),選D. 答案:D 3.設(shè)α,β∈[0,π],且滿足sin αcos β-cos αsin β=1,則sin(2α-β)+sin(α-2β)的取值范圍為(  ) A.[-,1] B.[-1,] C.[-1,1] D.[1,] 解析:∵sin αcos β-cos αsin β=1?sin(α-β)=1,α,β∈[0,π],∴α-β=, ∴?≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin+sin(α-2α+π)=sin α+cos α=sin. ∵≤α≤π,∴≤α+≤π, ∴-1≤sin≤1, 即取值范圍是[-1,1],故選C. 答案:C 4.已知=k,0<θ<,則sin的值為(  ) A.隨著k的增大而增大 B.有時(shí)隨著k的增大而增大,有時(shí)隨著k的增大而減小 C.隨著k的增大而減小 D.是與k無關(guān)的常數(shù) 解析:==2sin θcos θ=sin 2θ,∵0<θ<,∴0<sin θ<<cos θ<1,0<2θ<,∴k=sin 2θ∈(0,1),(sin θ-cos θ)2=1-sin 2θ,sin θ-cos θ=-=-,故sin=(sin θ-cos θ)=-,其值隨著k的增大而增大,故選A. 答案:A 5.函數(shù)f(x)=4cos xsin-1(x∈R)的最大值為 . 解析:∵f(x)=4cos xsin-1 =4cos x-1=2sin xcos x+2cos2x-1=sin 2x+cos 2x=2sin, ∴f(x)max=2. 答案:2 6.已知函數(shù)f(x)=Acos2(ωx+φ)+1的最大值為3,f(x)的圖像與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對(duì)稱軸間的距離為2,則f(1)+f(2)+…+f(2 016)= . 解析:f(x)=cos(2ωx+2φ)++1.由相鄰兩條對(duì)稱軸間的距離為2,知=2,得T=4=,∴ω=,由f(x)的最大值為3,得A=2.又f(x)的圖像過點(diǎn)(0,2), ∴cos 2φ=0, ∴2φ=kπ+(k∈Z),即φ=+(k∈Z),又0<φ<,∴φ=, ∴f(x)=cos+2=-sin+2.∴f(1)+f(2)+…+f(2 016)=(-1+2)+ (0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=22 016=4 032. 答案:4 032 7.已知函數(shù)f(x)=sin(3x+). (1)求f(x)的單調(diào)遞增區(qū)間; (2)若α是第二象限角,f()=cos(α+)cos 2α,求cos α-sin α的值. 解析:(1)因?yàn)楹瘮?shù)y=sin x的單調(diào)遞增區(qū)間為[-+2kπ,+2kπ],k∈Z.由-+2kπ≤3x+≤+2kπ,k∈Z,得-+≤x≤+,k∈Z. 所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[-+,+],k∈Z. (2)由已知,有sin(α+)=cos(α+)(cos2α-sin2α),所以sin αcos +cos αsin =(cos αcos -sin αsin )(cos2α-sin2α), 即sin α+cos α=(cos α-sin α)2(sin α+cos α). 當(dāng)sin α+cos α=0時(shí),由α是第二象限角,知α=+2kπ,k∈Z.此時(shí),cos α-sin α=-. 當(dāng)sin α+cos α≠0時(shí),有(cos α-sin α)2=. 由α是第二象限角,知cos α-sin α<0, 此時(shí)cos α-sin α=-. 綜上所述,cos α-sin α=-或-. 8.已知函數(shù)f(x)=sin ωx-sin(ω>0). (1)若f(x)在[0,π]上的值域?yàn)椋螃氐娜≈捣秶? (2)若f(x)在上單調(diào),且f(0)+f=0,求ω的值. 解析:f(x)=sin ωx-sin =sin. (1)由x∈[0,π]?ωx-∈,又f(x)在[0,π]上的值域?yàn)?,即最小值為,最大值?,則由正弦函數(shù)的圖像可知≤ωπ-≤,得≤ω≤. ∴ω的取值范圍是. (2)因?yàn)閒(x)在上單調(diào),所以≥-0,則≥,即ω≤3,又ω>0,所以0<ω≤3, 由f(0)+f=0且f(x)在上單調(diào),得是f(x)圖像的對(duì)稱中心, ∴-=kπ,k∈Z?ω=6k+2,k∈Z, 又0<ω≤3,所以ω=2.

注意事項(xiàng)

本文(理數(shù)北師大版練習(xí):第三章 第六節(jié) 簡(jiǎn)單的三角恒等變形 Word版含解析)為本站會(huì)員(仙***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!