《新課標(biāo)高三數(shù)學(xué) 一輪復(fù)習(xí) 第2篇 第3節(jié) 函數(shù)的奇偶性與周期性課時(shí)訓(xùn)練 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《新課標(biāo)高三數(shù)學(xué) 一輪復(fù)習(xí) 第2篇 第3節(jié) 函數(shù)的奇偶性與周期性課時(shí)訓(xùn)練 理(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
【導(dǎo)與練】(新課標(biāo))20xx屆高三數(shù)學(xué)一輪復(fù)習(xí) 第2篇 第3節(jié) 函數(shù)的奇偶性與周期性課時(shí)訓(xùn)練 理
【選題明細(xì)表】
知識(shí)點(diǎn)、方法
題號(hào)
函數(shù)奇偶性的判定
1、4、13
函數(shù)周期性的應(yīng)用
6、9、11、14
利用函數(shù)的奇偶性求函數(shù)值
2、5、8、15
利用函數(shù)的奇偶性求函數(shù)解析式或參數(shù)
7、10、12
利用函數(shù)的奇偶性比較函數(shù)值的大小、解函數(shù)不等式
3、16
基礎(chǔ)過關(guān)
一、選擇題
1.(20xx高考新課標(biāo)全國卷Ⅰ)設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是( C )
(A)f(x)g(x)是偶函
2、數(shù) (B)|f(x)|g(x)是奇函數(shù)
(C)f(x)|g(x)|是奇函數(shù) (D)|f(x)g(x)|是奇函數(shù)
解析:f(x)是奇函數(shù),則f(-x)=-f(x),
g(x)是偶函數(shù),g(-x)=g(x),
則f(-x)g(-x)=-f(x)g(x),選項(xiàng)A錯(cuò);
|f(-x)|g(-x)=|f(x)|g(x),選項(xiàng)B錯(cuò);
f(-x)|g(-x)|=-f(x)|g(x)|,選項(xiàng)C正確;
|f(-x)·g(-x)|=|f(x)g(x)|,選項(xiàng)D錯(cuò).
2.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,則f(1)等于( A )
(A)-3 (B)-1
3、(C)1 (D)3
解析:∵f(x)是奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x2-x,
∴f(1)=-f(-1)=-[2×(-1)2-(-1)]=-3.
3.定義在R上的偶函數(shù)f(x),對(duì)任意x1,x2∈[0,+∞)(x1≠x2),有f(x2)-f(x1)x2-x1<0,則( A )
(A)f(3)<f(-2)<f(1) (B)f(1)<f(-2)<f(3)
(C)f(-2)<f(1)<f(3) (D)f(3)<f(1)<f(-2)
解析:由題意知f(x)為偶函數(shù),所以f(-2)=f(2),
又x∈[0,+∞)時(shí),f(x)
4、為減函數(shù),且3>2>1,
∴f(3)<f(2)<f(1),即f(3)<f(-2)<f(1).
4.(20xx重慶模擬)函數(shù)y=f(x)(x∈R)的圖象如圖所示,下列說法正確的是( C )
①函數(shù)y=f(x)滿足f(-x)=-f(x);
②函數(shù)y=f(x)滿足f(x+2)=f(-x);
③函數(shù)y=f(x)滿足f(-x)=f(x);
④函數(shù)y=f(x)滿足f(x+2)=f(x).
(A)①③ (B)②④ (C)①② (D)③④
解析:根據(jù)圖象知函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,故為奇函數(shù),所以①正確;又其圖象關(guān)于直線x=1對(duì)稱,所以②正確.
5、5.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax-a-x+2(a>0,且a≠1).若g(2)=a,則f(2)等于( B )
(A)2 (B)154 (C)174 (D)a2
解析:∵f(x)為奇函數(shù),g(x)為偶函數(shù),
∴f(-2)=-f(2),g(-2)=g(2)=a,
∵f(2)+g(2)=a2-a-2+2,①
∴f(-2)+g(-2)=g(2)-f(2)=a-2-a2+2,②
由①、②聯(lián)立得g(2)=a=2,f(2)=a2-a-2=154.
6.(20xx石家莊模擬)已知f(x)是周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=l
6、g x,設(shè)a=f(65),b=f(32),c=f(52),則( A )
(A)c<a<b (B)a<b<c
(C)b<a<c (D)c<b<a
解析:a=f(65)=f(-45)=-f(45)=-lg 45=lg 54,
b=f(32)=f(-12)=-f(12)=-lg12=lg 2,
c=f(52)=f(12)=lg 12,
因?yàn)?>54>12,所以lg 2>lg54>lg12,
所以b>a>c.
二、填空題
7.函數(shù)f(x)在R上為奇函數(shù),且x>0時(shí),f(x)=x+1,則當(dāng)x<
7、;0時(shí),f(x)= .
解析:∵f(x)為奇函數(shù),x>0時(shí),f(x)=x+1,
∴當(dāng)x<0時(shí),-x>0,
f(x)=-f(-x)=-(-x+1),
即x<0時(shí),f(x)=-(-x+1)=--x-1.
答案:--x-1
8.已知函數(shù)f(x)為奇函數(shù),函數(shù)f(x+1)為偶函數(shù),f(1)=1,則f(3)= .
解析:法一 根據(jù)條件可得f(3)=f(2+1)=f(-2+1)=f(-1)=-f(1)=-1.
法二 使用特例法,尋求函數(shù)模型,令f(x)=sin π2x,則f(x+1)=sin(π2x+π2)=cos π2x,
8、滿足以上條件,所以f(3)=sin 3π2=-1.
答案:-1
9.(20xx高考四川卷)設(shè)f(x)是定義在R上的周期為2的函數(shù),當(dāng)x∈[-1,1)時(shí),f(x)=-4x2+2,-1≤x<0,x,0≤x<1,則f(32)= .
解析:由題意可知,f(32)=f(2-12)=f(-12)=-4(-12)2+2=1.
答案:1
10.(20xx長春模擬)已知定義在R上的奇函數(shù)滿足f(x)=x2+2x(x≥0),若f(3-a2)>f(2a),則實(shí)數(shù)a的取值范圍是 .
解析:由題意可得f(x)=x2+2x(x≥0)在[0,+∞)上為增
9、函數(shù),
又f(x)為定義在R上的奇函數(shù),
所以f(x)在R上為增函數(shù).
由f(3-a2)>f(2a)得3-a2>2a,
即a2+2a-3<0,解得-3<a<1.
答案:(-3,1)
三、解答題
11.已知函數(shù)f(x)是定義在R上的奇函數(shù),且它的圖象關(guān)于直線x=1對(duì)稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若f(x)=x(0≤x≤1),求x∈[-5,-4]時(shí),函數(shù)f(x)的解析式.
(1)證明:由函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,
有f(1+x)=f(1-x),即有f(-x)=f(x+2).
又函數(shù)f(x)是定義在R上的奇函
10、數(shù),
故有f(-x)=-f(x).故f(x+2)=-f(x).
從而f(x+4)=-f(x+2)=f(x),
即f(x)是周期為4的周期函數(shù).
(2)解:由函數(shù)f(x)是定義在R上的奇函數(shù),有f(0)=0.
x∈[-1,0]時(shí),-x∈[0,1],f(x)=-f(-x)=--x.
故x∈[-1,0]時(shí),f(x)=--x.
x∈[-5,-4]時(shí),x+4∈[-1,0],
f(x)=f(x+4)=--x-4.
從而,x∈[-5,-4]時(shí),函數(shù)f(x)=--x-4.
12.已知函數(shù)f(x)=-x2+2x,x>0,0,x=0,x2+mx,x<0是奇函數(shù).
(1)求實(shí)數(shù)m的
11、值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
解:(1)設(shè)x<0,則-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)為奇函數(shù),所以f(-x)=-f(x),
于是x<0時(shí),f(x)=x2+2x=x2+mx,
所以m=2.
(2)由(1)知f(x)在[-1,1]上是增函數(shù),
要使f(x)在[-1,a-2]上單調(diào)遞增.
結(jié)合f(x)的圖象知a-2>-1,a-2≤1,
所以1<a≤3,故實(shí)數(shù)a的取值范圍是(1,3].
能力提升
13.定義兩種運(yùn)算:a?b=a2-b2,a?b=(a-
12、b)2,則f(x)=2?x2-(x?2)是( A )
(A)奇函數(shù) (B)偶函數(shù)
(C)既奇又偶函數(shù) (D)非奇非偶函數(shù)
解析:因?yàn)??x=4-x2,x?2=(x-2)2,
所以f(x)=4-x22-(x-2)2=4-x22-(2-x)=4-x2x,
該函數(shù)的定義域是[-2,0)∪(0,2],
且滿足f(-x)=-f(x).
故函數(shù)f(x)是奇函數(shù).
14.(20xx太原模擬)若偶函數(shù)y=f(x)為R上的周期為6的周期函數(shù),且滿足f(x)=(x+1)(x-a)(-3≤x≤3),則f(-6)等于 .
解析:因?yàn)閥=f(x)為偶函數(shù),且f(x)=(x
13、+1)(x-a)(-3≤x≤3),所以f(x)=x2+(1-a)x-a,1-a=0,
所以a=1,f(x)=(x+1)(x-1)(-3≤x≤3).
f(-6)=f(-6+6)=f(0)=-1.
答案:-1
15.設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
解:(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4為周期
14、的周期函數(shù),
∴f(π)=f(-1×4+π)
=f(π-4)
=-f(4-π)
=-(4-π)
=π-4.
(2)由f(x)是奇函數(shù)與f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故知函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱.
又當(dāng)0≤x≤1時(shí),f(x)=x,且f(x)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,則f(x)的圖象(-4≤x≤4)如圖所示.
當(dāng)-4≤x≤4時(shí),f(x)的圖象與x軸圍成的圖形面積為S,
則S=4S△OAB=4×(12×2×1)=4.
(3)
15、函數(shù)f(x)的單調(diào)遞增區(qū)間為[4k-1,4k+1](k∈Z),
單調(diào)遞減區(qū)間為[4k+1,4k+3](k∈Z).
探究創(chuàng)新
16.(20xx成都模擬)定義在R上的函數(shù)f(x)對(duì)任意a,b∈R都有f(a+b)=f(a)+f(b)+k(k為常數(shù)).
(1)判斷k為何值時(shí),f(x)為奇函數(shù),并證明;
(2)設(shè)k=-1,f(x)是R上的增函數(shù),且f(4)=5,若不等式f(mx2-2mx+3)>3對(duì)任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.
解:(1)若f(x)在R上為奇函數(shù),則f(0)=0,
令a=b=0,則f(0+0)=f(0)+f(0)+k,所以k=0.
證明:由f(a+b)=f
16、(a)+f(b),令a=x,b=-x,
則f(x-x)=f(x)+f(-x),
又f(0)=0,則有0=f(x)+f(-x),即f(-x)=-f(x)對(duì)任意x∈R成立,所以f(x)是奇函數(shù).
(2)因?yàn)閒(4)=f(2)+f(2)-1=5,所以f(2)=3.
所以f(mx2-2mx+3)>3=f(2)對(duì)任意x∈R恒成立.
又f(x)是R上的增函數(shù),所以mx2-2mx+3>2對(duì)任意x∈R恒成立,
即mx2-2mx+1>0對(duì)任意x∈R恒成立,
當(dāng)m=0時(shí),顯然成立;
當(dāng)m≠0時(shí),由m>0,Δ=4m2-4m<0,得0<m<1.
所以實(shí)數(shù)m的取值范圍是[0,1).