本 科 畢 業(yè) 論 文 外 文 翻 譯學(xué) 院: 機(jī)械自動(dòng)化學(xué)院專 業(yè): 機(jī)械工程及自動(dòng)化學(xué) 號(hào):學(xué)生姓名:指導(dǎo)教師:日 期:外 文 譯 文 題 目 ( 中 文 ) :故障的分析、尺寸的決定及凸輪的分析和應(yīng)用畢業(yè)設(shè)計(jì)外文翻譯- 0 -故障的分析、尺寸的決定以及凸輪的分析和應(yīng)用前言介紹:作為一名設(shè)計(jì)工程師有必要知道零件如何發(fā)生和為什么會(huì)發(fā)生故障,以便通過進(jìn)行最低限度的維修以保證機(jī)器的可靠性。有時(shí)一次零件的故障或者‘失效可能是很嚴(yán)重的一件事情,比如,當(dāng)一輛汽車正在高速行駛的時(shí)候,突然汽車的輪胎發(fā)生爆炸等。另一方面,一個(gè)零件發(fā)生故障也可能只是一件微不足道的小事,只是給你造成了一點(diǎn)小麻煩。一個(gè)例子足在一個(gè)汽車?yán)鋮s系統(tǒng)坐的暖氣裝置軟管的松動(dòng),后者發(fā)生的這次敞障造成的結(jié)果通常只不過是一北暖氣裝置坐冷卻劑的損失,是一種很容易被發(fā)現(xiàn)并且被改正的情況。能夠被零件進(jìn)行吸收的載荷是相當(dāng)重要的。一般說來, .與靜載重相比較,有兩個(gè)相反方向的動(dòng)載荷將會(huì)引起更人的問題,I 大 1 此,疲勞強(qiáng)度必須被考慮。另一個(gè)關(guān)鍵是材料是可延展性的還是脆性的。例如,脆的材料被認(rèn)為在存在疲勞的地方是不能夠被使用的。很多人錯(cuò)誤的把一個(gè)零件發(fā)生故障或者‘失效理解成這樣就意味著一個(gè)零件遭到了實(shí)際的物理破損。無論如何,一名設(shè)計(jì)工程師必須從一個(gè)更廣泛的范同米考慮和理解變形是究竟如何發(fā)生的。一種具有延展性的材料,在破裂之前必將發(fā)生很人程度的變形。發(fā)牛了過度的變形,但并沒有產(chǎn)生裂縫,也可能會(huì)引起一臺(tái)機(jī)器出毛病,因?yàn)榘l(fā)?;兊牧慵?huì)干擾下一個(gè)零件的移動(dòng)。岡此,每當(dāng)它不能夠再履行它要求達(dá)到的性能的時(shí)候,一個(gè)零件就都算足被毀壞了(即使它的表面沒有被損毀) 。有時(shí)故障可能是由于兩個(gè)兩個(gè)相互搭配的零件之問的不正常的磨擦或者異常的振動(dòng)引起的。故障也可能是由一種叫蠕變的現(xiàn)象引起的,這種現(xiàn)象是指金屬在高溫下時(shí)一種材料的塑性流動(dòng)。此外,一個(gè)零件的實(shí)際形狀可能會(huì)引起故障的發(fā)生。例如,應(yīng)力的集中可能就是由于輪廓的突然變化引起的,這一點(diǎn)也需要被考慮到。當(dāng)有用兩個(gè)相反方向的動(dòng)載荷,材料不具有很好的可延展性時(shí),對(duì)應(yīng)力考慮的評(píng)估就特別重要。一般說米,設(shè)計(jì) T 程師必須考慮故障可能發(fā)生的全部方式,包括如下一些方面:——壓力——變形——磨損——腐蝕——振動(dòng)——環(huán)境破壞——固定設(shè)備松動(dòng)在選擇零件的大小,與形狀的時(shí)候,也必須考慮到一絲可能會(huì)產(chǎn)生外部負(fù)載影響的窄問岡素,例如兒何學(xué)問斷性,為了達(dá)到要求的外形輪廓及使用相關(guān)的連接件,也會(huì)產(chǎn)生相應(yīng)的殘余應(yīng)力。凸輪是被應(yīng)用的最廣泛的機(jī)械結(jié)構(gòu)之一。凸輪是一種儀儀有兩個(gè)組件構(gòu)成的設(shè)備。主動(dòng)件本身就是凸輪,而輸出件被稱為從動(dòng)件。通過使用凸輪,一個(gè)簡單的輸入動(dòng)作可以被修改成幾乎可以想像得到的任何輸出運(yùn)動(dòng)。常見的一些關(guān)于凸輪應(yīng)用的例子有:_凸輪軸和汽車發(fā)動(dòng)機(jī)工程的裝配畢業(yè)設(shè)計(jì)外文翻譯- 1 -——專用機(jī)床——自動(dòng)電唱機(jī)——印刷機(jī)-自動(dòng)的洗衣機(jī)——自動(dòng)的洗碗機(jī)高速凸輪(凸輪超過 1000 rpm 的速度)的輪廓必須從數(shù)學(xué)意義上米定義。無論如何,大多數(shù)凸輪以低速(少于 500 rpm)運(yùn)行而中速的凸輪可以通過一個(gè)大比例的圖形表示出來。一般說來,凸輪的速度和輸出負(fù)載越火,凸輪的輪廓在被床,卜被加 T 時(shí)就一‘定要更加精密。材料的設(shè)計(jì)屬性當(dāng)他們與抗拉的試驗(yàn)有關(guān)時(shí),材料的下列設(shè)計(jì)特性被定義如下.靜強(qiáng)度:一個(gè)零件的強(qiáng)度是指零件在不會(huì)失去它被要求的能力的前提下能夠承受的最大應(yīng)力。岡此靜強(qiáng)度可以被認(rèn)為是大約等于比例極限,從理論上來說,我們可以認(rèn)為在這種情況下,材料沒有發(fā)生塑性變形和物理破壞。剛度:剛度是指材料抵抗變形的一種屬性。這條斜的模數(shù)線以及彈性模數(shù)是一種衡量材料的剛度的一種方法。彈性:彈性是指零件能夠吸收能量但并沒有發(fā)生永久變形的一種材料的屬性。吸收的能量的多少可以通過下面彈性區(qū)域內(nèi)的應(yīng)力圖表來描述出來。畢業(yè)設(shè)計(jì)外文翻譯- 2 -(圖 2.8)韌性:韌性和彈性是兩種相似的特性。無論如何,韌性是一種可以吸收能量并且不會(huì)發(fā)生破裂的能力。因此可以通過應(yīng)力圖里面的總面積來描述韌性,就像用圖 2.8 b描繪的那樣。顯而易見,脆性材料的韌性和彈性:非常低,并且大約相等。脆性:一種脆性的材料就是指在任何可以被看出來的塑性變形之前就發(fā)生破裂的材料。脆性的材料一‘般被認(rèn)為不適合用來做機(jī)床的零部件,因?yàn)楫?dāng)遇到由軸肩,孔,槽,或者鍵槽等兒何應(yīng)力集巾源引起的高的應(yīng)力時(shí),脆性材料是無法米產(chǎn)生局部屈服的現(xiàn)象以適應(yīng)高的應(yīng)力環(huán)境的。延展性:一種延展性材料會(huì)在破裂之前表現(xiàn)出很大程度上的塑性變形現(xiàn)象。延展性是通過可延展的零件在發(fā)生破裂前后的面積和長度的百分比米測(cè)量的。一個(gè)在發(fā)生破裂的零件,其伸長量如果為 5%,則認(rèn)為該伸長量就是可延展性和脆性材料分界線??慑懶裕嚎慑懶詮母旧蟻碚f是指材料的一種在承受擠壓或壓縮是可以發(fā)生塑性變形的能力,同時(shí),它也是一種在金屬被滾壓成鋼板時(shí)所需金屬的重要性能。硬度:一種材料的硬度是指它抵抗擠壓或者拉伸它的能力。一般說米,材料越硬,它的脆性也越大,因此,彈性越小。同樣,一種材料的極限強(qiáng)度粗略與它的硬度成正比。機(jī)械加工性能(或切削性):機(jī)械加工性能是指材料的一種容易被加工的性能。通常,材料越硬,越難以加工。壓應(yīng)力和剪應(yīng)力除抗拉的試驗(yàn)之外,還有其它一些可以提供有用信息的靜載荷的實(shí)驗(yàn)類型。壓縮測(cè)試:大多數(shù)可延展材料大約有相同特性,當(dāng)它們處于受壓狀態(tài)的緊張狀態(tài)時(shí)。極限畢業(yè)設(shè)計(jì)外文翻譯- 3 -強(qiáng)度,無論如何’ ,不能夠被用于評(píng)價(jià)壓力狀態(tài)。當(dāng)一件具有可延展性的樣品受壓發(fā)生塑性變形時(shí),材料的其它部分會(huì)凸出來,但是在這種緊張的狀態(tài)下,材料通常不會(huì)發(fā)生物理上的破裂。因此,一種可延展的材料通常是由于變形受壓而損壞的,并不是壓力的原因。剪應(yīng)力測(cè)試:軸,螺釘,鉚釘和焊接件被用這樣一種方式定位以致于生產(chǎn)了剪應(yīng)力。一張抗拉試驗(yàn)的試驗(yàn)圖紙就可以說明問題。當(dāng)壓力人到可以使材料發(fā)生永久變形或發(fā)生破壞時(shí),這時(shí)的壓力就被定義為極限剪切強(qiáng)度。極限剪切強(qiáng)度,無論如何,不等于處于緊張狀態(tài)的極限強(qiáng)度。例如,以鋼的材料為例,最后的剪切強(qiáng)度是處于緊張狀態(tài)大約極限強(qiáng)度的 75%。當(dāng)在機(jī)器零部件坐遇到剪應(yīng)力時(shí),這個(gè)差別就一定要考慮到了。動(dòng)力載荷不會(huì)在各種不同的形式的力之間不停發(fā)生變化的作用力被叫作靜載荷或者穩(wěn)定載荷。此外,我們通常也把很少發(fā)生變化的作用力叫作靜載荷。在拉伸實(shí)驗(yàn)巾,被分次、逐漸的加載的作用力也被叫作靜載荷。另一方面,在火小和力‘向-卜經(jīng)常發(fā)生變化的力則被稱為動(dòng)載荷。動(dòng)載荷可以被.再細(xì)分為以下的 3 種類型。變載荷:所謂變載荷,就是說載荷的大小在變,但是方向不變的載荷。比如說,變載荷會(huì)產(chǎn)生忽大忽小的張應(yīng)力,但不會(huì)產(chǎn)生壓應(yīng)力。周期性載荷:像這樣的話,如果大小和方向同時(shí)改變,則就是說這種載荷會(huì)反復(fù)周期性的產(chǎn)生變化的拉應(yīng)力和壓應(yīng)力,這種現(xiàn)象往往就伴隨著應(yīng)力在方向和大小上的周期性變化。沖擊載荷:這類載荷是由于沖擊作用產(chǎn)生的。一個(gè)例子就是一臺(tái)升降機(jī)墜落到位于通道底部的一套彈簧裝置上,這套裝置產(chǎn)生的力會(huì)比升降機(jī)本身的重量大上好幾倍。當(dāng)汽車的一個(gè)輪胎碰撞到道路上的一個(gè)突起或者路上的一個(gè)洞時(shí),相同的沖擊荷載的類型也會(huì)在汽車的減震器彈簧上發(fā)生。疲勞失效一疲勞極限線圖正如圖 2.lOa 所示,如果材料的某處經(jīng)常會(huì)產(chǎn)生人量的周期性作用力,那么在材料的表面就很可能會(huì)出現(xiàn)裂縫。裂縫最初是在應(yīng)力超過它極限壓力的地方開始出現(xiàn)的,而通常這往往是有微小的表面缺陷的地方,例如有一處材料出現(xiàn)瑕疵或者一道極小的劃痕。當(dāng)循環(huán)的次數(shù)增加時(shí),最初的裂縫開始在軸的周圍的逐漸產(chǎn)生許多類似的裂縫。所以說,第一道裂縫的意義就是指應(yīng)力集中的地方,它會(huì)力加速其它裂縫的產(chǎn)生。一但整個(gè)的外圍都出現(xiàn)了裂縫,裂縫就會(huì)開始向軸的中心轉(zhuǎn)移。最后,當(dāng)剩下的固體的內(nèi)部地區(qū)變得足夠小,且當(dāng)壓力超過極限強(qiáng)度時(shí),軸就會(huì)突然發(fā)生斷裂。對(duì)斷面的檢查可以發(fā)現(xiàn)一種非常有趣的圖案,如圖 2.13 中所示。外部的一個(gè)環(huán)形部分相對(duì)光滑一些,因?yàn)樵瓉肀砻嫔舷嗷ソ诲^的裂縫之問不斷地發(fā)生磨擦導(dǎo)致了這種現(xiàn)象的產(chǎn)生。無論如何,中心部分是粗糙的,表明中心是突然發(fā)生了斷裂,類似于脆性材料斷裂時(shí)的現(xiàn)象。這就表明了一個(gè)有趣的事實(shí)。當(dāng)正在使用的機(jī)器零件由于靜載荷的原因出現(xiàn)問題時(shí),由于材料具有的延展性,他們通常會(huì)發(fā)生一定程度的變形。畢業(yè)設(shè)計(jì)外文翻譯- 4 -(圖 2.13)盡管許多地由于靜壓力導(dǎo)致的零件故障可以通過頻繁的做實(shí)際的觀察并且替換全部發(fā)生變形的零件來避免。不管怎樣,疲勞失效有助于起到警告的作用。汽車中發(fā)生故障的零件中的 90%的原因都是因?yàn)槠诘淖饔?。一種材料的疲勞強(qiáng)度是指在壓力的反復(fù)作用下的抵抗產(chǎn)生裂縫的能力。持久極限是用來評(píng)價(jià)一種材料的疲勞強(qiáng)度的一個(gè)重要參數(shù)。進(jìn)一步說明就是,持久極限就是指在無限循環(huán)的作用力下不引起失效的壓力值。讓我們回頭來看在圖 2.9 所示的疲勞試驗(yàn)機(jī)器的。試驗(yàn)是這樣被進(jìn)行的:一件小的重物被插入,電動(dòng)機(jī)被啟動(dòng)。在試樣的失效過程中,由計(jì)算寄存器記錄下循環(huán)的次數(shù) N,并且彎曲壓力的相應(yīng)最大量由第 2.5 方程式計(jì)算。然后用一個(gè)新的樣品替換掉被毀壞的樣品,并且將另一個(gè)重物插入以增加負(fù)荷量。壓力的新的數(shù)值再次被計(jì)算,并且相同的程序冉次被重復(fù)進(jìn)行,直到零件的失效只需要一個(gè)完整周期時(shí)為止。然后根據(jù)壓力值和所需的循環(huán)的次數(shù)來繪制一個(gè)圖。正如圖表 2.14a 所示圖形,該圖被稱為持久極限曲線或者 S-N 曲線。由于這需要的前提是要進(jìn)行無限次的循環(huán),所以我們可以以 100 萬個(gè)循環(huán)用來作循環(huán)參考單位。因此,持久極限可以從圖表 2.14a 那里看到,該材料是在承受了 100 萬個(gè)循環(huán)后而沒有發(fā)生失效的。用圖 2.14 描繪的關(guān)系對(duì)于鋼的材料來說更為典型,因?yàn)楫?dāng) N 接近非常大的數(shù)字時(shí),曲線就會(huì)變得水平。因此持久極限等于曲線接近一條水平的切線時(shí)的壓力水平。由于包含了大量的循環(huán),在繪圖時(shí),N 通常會(huì)被按照對(duì)數(shù)標(biāo)度來畫,如圖 2.14 b中所示。當(dāng)采用這樣的方法做時(shí).水平的直線就可以更容易發(fā)現(xiàn)材料的持久極限值。對(duì)于鋼的材料來說,持久極限值大約等于極限強(qiáng)度的 50%。無論如何,已經(jīng)加工完成的表面如果不是一樣的光滑,持久極限的值就會(huì)被降低。例如,對(duì)于鋼材料的零件來說,63 微英寸( uin)的機(jī)械加工的表面,零件的持久極限占理論的持久極限的百分比降低到了大約 40%。而對(duì)于粗糙的表面來說(300uin,甚至更多) ,百分比可能降低到 25%左右的水平。最常見的疲勞損壞的類型通常是由于彎曲應(yīng)力所引起的。其次就是扭應(yīng)力導(dǎo)致的失效,而由于軸向負(fù)載引起的疲勞失效卻極少發(fā)生。彈性材料通常使用從零到最大值之問變化的剪應(yīng)力值來做實(shí)驗(yàn),以此來模擬材料實(shí)際的受力方式。就一些有色金屬而論,當(dāng)循環(huán)的次數(shù)變得非常大時(shí),疲勞曲線不會(huì)隨著循環(huán)次數(shù)的增大而變得水平。 ,而疲勞曲線的繼續(xù)變小,表明不管作用力有多么的小,多次的畢業(yè)設(shè)計(jì)外文翻譯- 5 -應(yīng)力反復(fù)作用都會(huì)引起零件的失效。這樣的一種材料據(jù)說沒有持久極限。對(duì)于大多數(shù)有色金屬來說,它們都有一個(gè)持久極限,數(shù)值大小大約是極限強(qiáng)度的 25%。溫度對(duì)屈服強(qiáng)度和彈性模數(shù)的影響一般說來,當(dāng)在說明一種擁有特殊的屬性的材料時(shí),如彈性模數(shù)和屈服強(qiáng)度,表示這些性能在室溫環(huán)境下就可以存在。在低的或者‘較高的溫度下,材料的特性可能會(huì)有很大的不同。例如,很多金屬在低溫時(shí)會(huì)變得更脆。此外,當(dāng)溫度升高時(shí),材料的彈性模數(shù)和屈服強(qiáng)度都會(huì)變差。圖 2.23 顯示了低碳鋼的屈服強(qiáng)度在從室溫升高到1OOO℃過程中被降低了大約 70%。當(dāng)溫度升高時(shí),圖 2.24 顯示了低碳鋼在彈性模數(shù) E 方面的削減。正如從圖上可以看見的那樣,彈性模數(shù)在從室溫升高到 1000℃過程中大約降低了 30%。從這張圖表中,我們也能看到在室溫下承受了一定載荷而不會(huì)發(fā)生變形的零件卻可能在高溫時(shí)承受相同載荷時(shí)發(fā)生永久變形。蠕變: 一種塑性變形的現(xiàn)象由于溫度效應(yīng)的影響,金屬中產(chǎn)生了一種被稱為蠕變的現(xiàn)象,一個(gè)承受了一定的載荷的零件的塑性變形是按照一個(gè)時(shí)間函數(shù)來逐漸增加的蠕變現(xiàn)象在室溫的條件下也是存在的,但它發(fā)生的過程是如此之慢,以致于很少變得像在預(yù)期壽命中溫度被升高到 300℃或更多時(shí)那樣顯著,逐漸增加的塑性變形可能在一段短的時(shí)期內(nèi)變得很明顯。材料的抗蠕變強(qiáng)度是指材料抵抗蠕變的屬性,并且抗蠕變強(qiáng)度的數(shù)據(jù)可以通過處理長期的蠕變?cè)囼?yàn)(模擬實(shí)際零件的操作條件)來獲得。在試驗(yàn)的過程中,給定的材料在規(guī)定的溫度下的塑性應(yīng)變被被進(jìn)行了實(shí)時(shí)監(jiān)控。 (圖 2.24)由于蠕變是一種塑性變形現(xiàn)象,發(fā)牛了蠕變的零件的尺寸可能就會(huì)被永久的改變。因此,如果一個(gè)零件是在很強(qiáng)的強(qiáng)度下運(yùn)轉(zhuǎn)的話,那么設(shè)計(jì)工程師必須精確地預(yù)言將在機(jī)器的使用壽命期間可能發(fā)生的蠕變的次數(shù)。否則,與此伴隨的或者相關(guān)的問題就可能發(fā)生。在高溫下,當(dāng)螺栓被用來緊固零件時(shí),蠕變就可能變成一個(gè)必須解決的問題。處在壓力狀態(tài)下的螺釘,蠕變是按照一個(gè)時(shí)間函數(shù)來發(fā)生的。因?yàn)樽冃问撬苄缘模瑠A畢業(yè)設(shè)計(jì)外文翻譯- 6 -緊力的損失將可能導(dǎo)致螺紋連接件的意外松動(dòng)。像這種特殊的現(xiàn)象,通常被稱為松弛,我們可以通過進(jìn)行適當(dāng)?shù)娜渥儚?qiáng)度時(shí)測(cè)試來確定是不是發(fā)生了蠕變。圖 2.25 顯示了三種承受了恒定的張緊力的低碳鋼零件的典型的蠕變曲線。從中,我們可以注意到在高溫條件下,蠕變發(fā)生的速度逐漸加速,直到零件失效。從圖表里的時(shí)間軸上(x 軸) ,我們可以描述在 10 年的時(shí)間里,這種產(chǎn)品的預(yù)期壽命。(圖 2.25)總結(jié)機(jī)器設(shè)計(jì)者必須理解進(jìn)行抗拉的靜止強(qiáng)度的測(cè)試目的。這種試驗(yàn)可以確定被在設(shè)計(jì)方程式過程中使用的許多金屬的機(jī)械特性。像彈性模數(shù),比例極限,屈服強(qiáng)度,彈性,以及延展性等等可以根據(jù)抗拉試驗(yàn)來決定它們的特性。動(dòng)載荷是指那寫在大小和方向上發(fā)生變化并且可能需要對(duì)機(jī)器零件在抵抗失效能力上的研究。由于應(yīng)力的反復(fù)作用,允許使用的安全應(yīng)力足基于材料的持久極限而不是基于屈服強(qiáng)度或者是極限強(qiáng)度。壓力集中在機(jī)器零件改變尺寸的位置發(fā)生,例如在一塊平的金屬板上的一個(gè)孔或者一塊平板、一個(gè)溝槽、一個(gè)圓軸上的皮帶在寬度方向上的突然變化。尤其是在一塊平板上或一塊條板上有一個(gè)孔的情況下,當(dāng)孔的大小減少時(shí),最大應(yīng)力的值相對(duì)于平均應(yīng)力變得大得多。減少的壓力集中影響的方法通常就是使在形狀上的變化更有規(guī)律性。被設(shè)計(jì)出來的機(jī)械零件被用于在低于屈服強(qiáng)度或者極限強(qiáng)度的一些允許的環(huán)境下使用。這種方法可以用來照顧到在加工期間像材料屬性的變化和殘余應(yīng)力的產(chǎn)生這樣的未知因素, 以及用來做近似而不是精確計(jì)算的方程式。根據(jù)屈服強(qiáng)度或者極限強(qiáng)度來確定安全系數(shù)以決定安全應(yīng)力的大小。溫度能影響金屬的機(jī)械特性。溫度的增加可能會(huì)引起金屬的熱脹和蠕變,并且還可能降低它的屈服強(qiáng)度和它的彈性模數(shù)。如果大多數(shù)金屬不被允許在溫度發(fā)生變化時(shí)發(fā)生膨脹或者收縮,那么壓力就會(huì)被當(dāng)做載荷來看待。這現(xiàn)象在依靠干涉配合來進(jìn)行零件裝配時(shí)是有益的。一個(gè)轂或者孔的內(nèi)徑比與它相配的軸或者圓柱的直徑小一點(diǎn)。先將轂加熱后,由于熱脹冷縮,此時(shí)可以輕松的將軸插入其中。當(dāng)它冷卻以后,同樣由于熱脹冷縮,它的內(nèi)孔直徑會(huì)變小,從而對(duì)插入其中的軸產(chǎn)生了很大的摩擦力,有效的防止了軸的松動(dòng)。計(jì)算機(jī)輔助制造構(gòu)造的類型盤形凸輪.這類凸輪是最受歡迎的類型之一,因?yàn)檫@種凸輪的設(shè)計(jì)和制造是比較簡單和容易的。如圖 6.1 所示的盤形凸輪??梢宰⒁獾綇膭?dòng)件移動(dòng)到了與凸輪的旋轉(zhuǎn)畢業(yè)設(shè)計(jì)外文翻譯- 7 -軸垂直的位置。所有的凸輪都按照兩個(gè)不同的實(shí)體在運(yùn)轉(zhuǎn)時(shí)不會(huì)互相碰撞的基本原理來運(yùn)行。因此,隨著凸輪的旋轉(zhuǎn)(在這種情況下,一般是逆時(shí)針轉(zhuǎn)) ,從動(dòng)件要么向上移動(dòng)要么就接受適當(dāng)?shù)募s束。我們應(yīng)該把注意力集中于防止從動(dòng)件發(fā)生粘接和使從動(dòng)件的運(yùn)動(dòng)滿足生產(chǎn)的要求。當(dāng)從動(dòng)件向下移動(dòng)時(shí),彈簧需要使從動(dòng)件的棍子和凸輪的輪廓保持。棍子是被用來減少齒輪接觸表面的磨擦力的。對(duì)于凸輪的每次旋轉(zhuǎn)來說,從動(dòng)件通過對(duì)凸輪底部死點(diǎn)的沖擊使其移動(dòng)到頂端。圖 6.2 所示的是一個(gè)帶有一個(gè)尖頂從動(dòng)件的盤形凸輪。復(fù)雜的動(dòng)作可以通過這類從動(dòng)件產(chǎn)生,因?yàn)橐粋€(gè)點(diǎn)能夠精確地跟隨著凸輪輪廓的任何突然變化。無論如何,這種設(shè)計(jì)局限于負(fù)荷是非常小的應(yīng)用里;否則兩個(gè)實(shí)體的接觸點(diǎn)將會(huì)被磨損掉,從而導(dǎo)致一系列的問題出現(xiàn)。盤形凸輪的兩個(gè)另外的變量分別是旋轉(zhuǎn)的從動(dòng)件和從動(dòng)件的偏移量,如圖 6.3所示。當(dāng)需要的是旋轉(zhuǎn)的運(yùn)動(dòng)時(shí),一個(gè)旋轉(zhuǎn)的從動(dòng)件就會(huì)被使用。關(guān)于從動(dòng)件的偏移量,我們需要注意從動(dòng)件的偏移量的大小是取決于像壓力角和凸輪外輪廓等參數(shù)的,這兩個(gè)參數(shù)稍后將會(huì)被介紹。沒有偏移量的從動(dòng)件被稱作同軸心的從動(dòng)件。傳遞動(dòng)力的凸輪:如圖 6.4 所描繪的被用米傳遞動(dòng)力的凸輪。當(dāng)凸輪朝著水平的方向傳遞運(yùn)動(dòng)時(shí),從動(dòng)件會(huì)產(chǎn)生上下滑動(dòng)。從這里我們可以看出,一個(gè)旋轉(zhuǎn)的從動(dòng)件和一個(gè)滑動(dòng)的從動(dòng)件都可以被使用。這種類型的動(dòng)作通常會(huì)被用在一些生產(chǎn)用于凸輪上的產(chǎn)品的專用機(jī)床上。這種設(shè)計(jì)上的變化在旋轉(zhuǎn)和傳輸動(dòng)力的三維的凸輪上體現(xiàn)了出來。例如,一塊手工制造的步槍原料被放在一臺(tái)專用車床上。這塊原料的形狀是要求能夠?qū)崿F(xiàn)以各凸輪所要達(dá)到的功能。當(dāng)它旋轉(zhuǎn)并傳輸動(dòng)力時(shí),從動(dòng)件就可以控制用來把一塊木材加工成生產(chǎn)步槍原料的機(jī)床。主動(dòng)凸輪:在上述的凸輪設(shè)計(jì)巾,凸輪和從動(dòng)件之問在往返運(yùn)動(dòng)中保持接觸是通過彈簧力的作用來保證的。無論如何,處于高速運(yùn)轉(zhuǎn)中的凸輪,用來保持凸輪和從動(dòng)件之間的接觸的彈簧力可能會(huì)變得很大,這是由于凸輪在高速運(yùn)動(dòng)中的加速度會(huì)產(chǎn)生額外的動(dòng)作用力,接觸的位置可能會(huì)發(fā)生變形。在這種情況下,接觸面可能產(chǎn)生過大的壓力,這樣將會(huì)導(dǎo)致零件過早的被磨損。主動(dòng)凸輪是不需要彈簧的,因?yàn)閺膭?dòng)件被迫在兩個(gè)方向上與凸輪接觸。這樣的主動(dòng)凸輪可以分為 4 類:圓柱形的凸輪,開槽的盤形凸輪(也叫表面凸輪) ,分型板凸輪,以及共軛凸輪。畢業(yè)設(shè)計(jì)外文翻譯- 8 -(圖 6.4)圓柱形凸輪:如圖 6.5 所示,圓柱形凸輪可以使從動(dòng)件實(shí)現(xiàn)不斷的往復(fù)運(yùn)動(dòng)。圖 6.6 所示的是一個(gè)旋轉(zhuǎn)的從動(dòng)件的應(yīng)用實(shí)例。通過凸輪上槽溝的設(shè)計(jì),我們可以實(shí)現(xiàn)使用幾個(gè)凸輪軸來完成從動(dòng)件的圓周分布。開槽的盤形凸輪:在圖 6.8 上,我們可以看到一個(gè)帶有旋轉(zhuǎn)的從動(dòng)件的分型板凸輪,但是這樣的設(shè)計(jì)也可以被用于傳遞動(dòng)力的從動(dòng)件上面。凸輪 E 和 F 一起繞著凸輪軸 B 旋轉(zhuǎn)。凸輪 E 始終保持與滾筒 C 接觸,而凸輪 F 則一直和滾筒 D 保持著接觸。滾筒 C 和滾筒 D 都被安裝在一根直角杠桿上,而這個(gè)直角杠桿是繞著點(diǎn) A 擺動(dòng)的從動(dòng)件。當(dāng)凸輪 F 提供個(gè)滾筒 D 的需要的動(dòng)作時(shí),凸輪 E 則被用于給滾筒 C 提供需要的動(dòng)作。共軛凸輪,這種類型的凸輪,正如圖表 6.9 描述的那樣,由一個(gè)被安裝在凸輪軸偏心處的圓凸輪組成。從動(dòng)件每次的擺度等于兩倍的凸輪的偏心矩 e。這樣的凸輪會(huì)生產(chǎn)簡諧振運(yùn)動(dòng)而沒有保留時(shí)間。下面更進(jìn)一步的討論一下第 6.8 部分。計(jì)算機(jī)輔助制造的專有名詞在我們涉及凸輪的設(shè)計(jì)之前,我們很有必要知道各種各樣被用于鑒別凸輪的重要的設(shè)計(jì)參數(shù)??匆幌孪聢D 6.11 中的術(shù)語。如果你把凸輪想像成是不動(dòng)的,而從動(dòng)件是繞著凸輪轉(zhuǎn)動(dòng)的,那么,你將更容易理解對(duì)凸輪的描述。軌跡點(diǎn):是指尖頂從動(dòng)件的終點(diǎn)或者輥?zhàn)又行幕蛘咻佔(zhàn)又惖膹膭?dòng)件的終點(diǎn)。凸輪輪廓:凸輪的實(shí)際形狀?;鶊A:是指能夠畫出來的且與凸輪的輪廓線相切的最小的圓。它的中心也就是凸輪軸的中心。 凸輪軸里的最小的半徑就是基圓的半徑。嚙合曲線:假定凸輪是固定不動(dòng)的,從動(dòng)件繞著凸輪旋轉(zhuǎn)的,那么,軌跡點(diǎn)的路徑就是嚙合曲線。優(yōu)圓:優(yōu)圓是指與嚙合曲線相切,且它的中心也在分配軸的中心的圓。壓力角:壓力角是指從動(dòng)件的運(yùn)動(dòng)力向與節(jié)圓上輥?zhàn)拥闹行乃诘狞c(diǎn)之間的角度。凸輪外形:與凸輪輪廓相同。BDC:是 Bottom Dead Center 的縮寫,是指從動(dòng)件離凸輪中心最近的位置。行程:是指從動(dòng)件在 BDC 和 TDC 之間走過的路程的長度。高度上的行程:是指從動(dòng)件從 BDC 轉(zhuǎn)到 TDC 的時(shí)高度的變化值。畢業(yè)設(shè)計(jì)外文翻譯- 9 -返程:是指從動(dòng)件從 TDC 轉(zhuǎn)到 BDC 時(shí)所需時(shí)問。輪廓平行線:是指當(dāng)凸輪在轉(zhuǎn)動(dòng)時(shí),從動(dòng)件可以和凸輪的中心保持恒定的距離不變的軌跡。我們可以通過圖 6.12 獲得對(duì)壓力角的意義有一個(gè)更清楚、更深刻的理解。在這里,F(xiàn)T 是影響輥?zhàn)拥囊粋€(gè)合力。在任何一個(gè)接觸點(diǎn)的地方,它一定是與表面垂直的。Fr 的方向顯而易見不與從動(dòng)件運(yùn)動(dòng)的方向平行。相反,它時(shí)通過壓力角 a 來表明從動(dòng)件的運(yùn)動(dòng)的方向的。因此,力 FT 可以被分解為水平方向的力 FH 和垂直方向的力 Fv 兩部分。垂直分量是向上驅(qū)動(dòng)從動(dòng)件的那個(gè)力,因此,忽略了摩擦力,就等于從動(dòng)件所受的力。水平方向的力沒有座有用功,但是它仍然是不可或缺的。事實(shí)上,它試圖使從動(dòng)件能夠沿著它的方向走。這樣就可能會(huì)損壞從動(dòng)件或者。使從動(dòng)件被卡死。很明顯,我們希望壓力角能夠盡可能的減小測(cè)向力的大小。一個(gè)實(shí)際的經(jīng)驗(yàn)法則是設(shè)計(jì)凸輪輪廓時(shí),應(yīng)使壓力角的度數(shù)不超過 30°。壓力角的大小,一般說來,取決于從動(dòng)件的以下四個(gè)參數(shù):——基圓的大小?!獜膭?dòng)件相對(duì)主動(dòng)件的圓心的偏移量的大小?!獫L筒直徑的大小。——凸輪輪廓平面(取決于使用的從動(dòng)件運(yùn)動(dòng)的從動(dòng)件行程和類型) 。如果凸輪的要求沒有改變,那么前面提到的一寫參數(shù)就不能被改變。例如空間的限制。在我們已經(jīng)學(xué)習(xí)過了如何設(shè)計(jì)凸輪之后,我們將學(xué)到減小壓力角的各種各樣的方法。畢業(yè)設(shè)計(jì)外文翻譯- 10 -Failure Analysis, Dimensional Determination And Analysis,Applications Of CamsINTRODUCTIONIt is absolutely essential that a design engineer know how and why parts fail so thatreliable machines that require minimum maintenance can be designed. Sometimes a failurecan be serious, such as when a tire blows out on an automobile traveling at high speed . Onthe other hand, a failure may be no more than a nuisance. An example is the loosening ofthe radiator hose in an automobile cooling system. The consequence of this latter failure isusually the loss of some radiator coolant , a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude. Generallyspeaking, dynamic loads with direction reversals cause greater difficulty than static loads,and therefore, fatigue strength must be considered. Another concern is whether the materialis ductile or brittle. For example, brittle materials are considered to be unacceptable wherefatigue is involved.Many people mistaking interpret the word failure to mean the actual breakage of apart. However, a design engineer must consider a broader understanding of whatappreciable deformation occurs. A ductile material, however will deform a large amountprior to rupture. Excessive deformation, without fracture, may cause a machine to failbecause the deformed part interferes with a moving second part. Therefore, a partfails(even if it has not physically broken)whenever it no longer fulfills its requiredfunction. Sometimes failure may be due to abnormal friction or vibration between twomating parts. Failure also may be due to a phenomenon called creep, which is the plasticflow of a material under load at elevated temperatures. In addition, the actual shape of apart may be responsible for failure. For example, stress concentrations due to suddenchanges in contour must be taken into account. Evaluation of stress considerations isespecially important when there are dynamic loads with direction reversals and thematerial is not very ductile.In general, the design engineer must consider all possible modes of failure, whichinclude the following.-Stress-Deformation-Wear-Corrosion-Vibration-Environmental damage-Loosening of fastening devicesThe part sizes and shapes selected also must take into account many dimensionalfactors that produce external load effects, such as geometric discontinuities, residual畢業(yè)設(shè)計(jì)外文翻譯- 11 -stresses due to forming of desired contours, and the application of interference fit joints.Cams are among the most versatile mechanisms available. A cam is a simpletwo-member device. The input member is the cam itself,while the output member is calledthe follower. Through the use of cams, a sample input motion can be modified into almostany conceivable output motion that is desired. Some of the common applications of camsare-Camshaft and distributor sharp of automotive engine-Production machine tools-Automatic record players-Printing machines-Automatic washing machines-Automatic dishwashersThe contour of high-speed cams (cam speed in excess of lOOO rpm) must bedetermined mathematically. However, the vast majority of cams operate at low speeds(lessthan 500 rpm) or medium-speed cams can be determined graphically using a large-scalelayout. In general, the greater the cam speed and output load, the grater must be theprecision with which the cam contour is machined.DESIGN PROPERTIES OF MATERIALSThe following design properties of materials are defined as they relate to the tensiletest .Figure 2.7Static Strength. The strength offal part is the maximum stress that the part can sustainwithout losing its ability to perform its required function. Thus the static strength may beconsidered to be approximately equal to the proportional limit , since no plasticdeformation takes place and no damage theoretically is done to the material.Stiffness. Stiffness is the deformation-resisting property of a material. The slope of themodulus line and, hence, the modulus of clasticity arc measures of the stiffness of amaterial.Resilience. Resiliency is the property of a material that permits it to absorb energywithout permanent deformation. The amount of energy absorbed is represented by the areaunderneath the stress-strain diagram xvithin the elastic region.Toughness. Resilience and toughness are similar properties. However, toughness is畢業(yè)設(shè)計(jì)外文翻譯- 12 -the ability to absorb energy without rupture. Thus toughness is represented by the total areaundemeath the stress-strain diagram, as depicted in Figure 2. 8b. Obviously, thetoughness and resilience of brittle materials arc very low and arc approximately equal.Brittleness. A brittle material is one that ruptures before any appreciable plasticdeformation takes place. Brittle materials are generally considered undesirable for machinecomponents because they arc unable to yield locally at locations of high stress because ofgeometric stress raisers such as shoulders, holds, notches, or keyways.Ductility. A ductility material exhibits a large amount of plastic deformation priorto rupture. Ductility is measured by the percent of area and percent elongation of a partloaded to rupture. A 5%elongation at rupture is considered to be the dividing line betweenductile and brittle materials.Malleability. Malleability is essentially a measure of the compressive ductility of amaterial and, as such, is an important characteristic of metals that arc to be rolled intosheets.Hardness. The hardness of a material is its ability to resist indentation orscratching. Generally speaking, the harder a material, the more brittle it is and, hence,the less resilient. Also, the ultimate strength of a material is roughly proportional to itshardness.Mach inability. Mach inability is a measure of the relative ease with which a material canbe machined. In general, the harder the material, the more difficult it is to machine.Figure 2.8COMPRESSION AND SHEAR STATIC STRENGTHIn addition to the tensile tests, there are other types of static load testing that providevaluable information.Compression Testing. Most ductile materials have approximately the same propertiesin compression as in tension. The ultimate strength, however, can not be evaluated forcompression As a ductile specimen flows plastically in compression, the material bulgesout, but there is no physical rupture as is the case in tension. Therefore, a ductile materialfails in compression as a result of deformation, not stress.Shear Testing. Shafts, bolts, rivets, and welds are located in such a way that shearstresses are produced. A plot of the tensile test. The ultimate shearing strength is defined as畢業(yè)設(shè)計(jì)外文翻譯- 13 -the stress at which failure occurs. The ultimate strength in shear, however, docs not equalthe ultimate strength in tension. For example, in the case of steel, the ultimate shearstrength is approximately 75% of the ultimate strength in tension. This difference must betaken into account when shear stresses arc encountered in machine components.DYNAMIC LOADSAn applied force that does not vary in any manner is called a static or steady load. It isalso common practice to consider applied forces that seldom vary to be static loads. Theforce that is gradually applied during a tensile test is therefore a static load .On the other hand, forces that vary frequently in magnitude and direction are calleddynamic loads. Dynamic loads can be subdivided to the following three categories.Varying Load. With varying loads, the magnitude changes, but the direction docsnot. For example, the load may produce high and low tensile stresses but no compressivestresses.Reversing Load. In this case, both the magnitude and direction change. These loadreversals produce ultimately varying tensile and compressive stresses that are commonlyreferred to as stress reversals.Shock Load. This type of load is due to impact. One example is an elevator droppingon a nest of springs at the bottom of a chute. The rebuking maximum spring force can bemany times greater than the weight of the elevator, The same type of shock load occurs inautomobile springs when a tire hits a bump or hole in the road.FATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAMThe test specimen in Figure 2.lOa. , afire a given number of stress reversals willexperience a crack at the outer surface where the stress is greatest. The initial crack startswhere the stress exacts the strength of the grain on which it acts. This is usually wherethere is a small surface defect, such as a material flaw or a tiny scratch. As the number ofcycles increases, the initial crack begins to propagate into a continuous series of cracks allaround the periphery of the shaft. The conception of the initial crack is itself a stressconcentration that accelerates the crack propagation phenomenon. Once the centricperiphery becomes cracked, the cracks start to move toward the center of theshaft. Finally, when the remaining solid inner area becomes small enough, the stressexceeds the ultimate strength and the shaft suddenly breaks. Inspection of the break revealsa very interesting pattern, as shown in Figure 2.13. The outer annular area is relativelysmooth because mating cracked surfaces had rubbed against catch other. However, thecenter portion is rough, indicating a sudden rupture similar to that experienced with thefracture of brittle materials.This brings out an interesting fact. When actual machine parts fail as a result of staticloads, they normally deform appreciably because of the ductility of the material.畢業(yè)設(shè)計(jì)外文翻譯- 14 -Figure 2.13Thus many static failures can be avoided by making frequent visual observations andreplacing all deformed parts. However, fatigue failures give to warming. Fatigue fail matedthat over 90% of broken automobile parts have failed through fatigue.The fatigue strength of a material is its ability to resist the propagation of cracks understress reversals. Endemic limit is a parameter used to measure the fatigue strength of amaterial. By definition, the endurance limit is the stress value below which an inmatenumber of cycles will not cause failure.Let us return our attention to the fatigue testing machine in Figure 2.9. The test is runas follows: A small weight is inserted and the motor is turned on. At failure of the testspecimen, the counter registers the number of cycles N, and the corresponding maximumbending stress is calculated from Equation 2.5. The broken specimen is then replaced by anidentical one, and an additional weight is inserted to increase the load. A new value ofstress is calculated, and the procedure is repeated until failure requires only one completecycle. A plot is then made of stress versus number of cycles to failure. Figure 2.14a showsthe plot, which is called the endurance limit or S-N curve. Since it would take forever toachieve an infinite number of Cycles, I million Cycles is used as a reference. Hence theendurance limit can be found from Figure 2.14a by noting that it is the stress level belowwhich the material can sustain I million cycles without failure.The relationship depicted in Figure 2.14 is typical for steel, because the curve becomeshorizontal as N approaches a very large number. Thus the end