概率統(tǒng)計(jì)公式大全[共32頁(yè)][共32頁(yè)]
《概率統(tǒng)計(jì)公式大全[共32頁(yè)][共32頁(yè)]》由會(huì)員分享,可在線閱讀,更多相關(guān)《概率統(tǒng)計(jì)公式大全[共32頁(yè)][共32頁(yè)](32頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、概率論與數(shù)理統(tǒng)計(jì) 公式(全) 2011-1-1 第1章 隨機(jī)事件及其概率 (1) 排列組合公式 從m個(gè)人中挑出n個(gè)人進(jìn)行排列的可能數(shù)。 從m個(gè)人中挑出n個(gè)人進(jìn)行組合的可能數(shù)。 (2) 加法和乘法原理 加法原理(兩種方法均能完成此事):m+n 某件事由兩種方法來(lái)完成,第一種方法可由m種方法完成,第二種方法可由n種方法來(lái)完成,則這件事可由m+n 種方法來(lái)完成。 乘法原理(兩個(gè)步驟分別不能完成這件事):mn 某件事由兩個(gè)步驟來(lái)完成,第一個(gè)步驟可由m種方法完成,第二個(gè)步驟可由n 種方法來(lái)完成,則這件事可由mn 種方法來(lái)完成。 (3) 一些常見(jiàn)排列 重復(fù)排列
2、和非重復(fù)排列(有序) 對(duì)立事件(至少有一個(gè)) 順序問(wèn)題 (4) 隨機(jī)試驗(yàn)和隨機(jī)事件 如果一個(gè)試驗(yàn)在相同條件下可以重復(fù)進(jìn)行,而每次試驗(yàn)的可能結(jié)果不止一個(gè),但在進(jìn)行一次試驗(yàn)之前卻不能斷言它出現(xiàn)哪個(gè)結(jié)果,則稱(chēng)這種試驗(yàn)為隨機(jī)試驗(yàn)。 試驗(yàn)的可能結(jié)果稱(chēng)為隨機(jī)事件。 (5) 基本事件、樣本空間和事件 在一個(gè)試驗(yàn)下,不管事件有多少個(gè),總可以從其中找出這樣一組事件,它具有如下性質(zhì): ①每進(jìn)行一次試驗(yàn),必須發(fā)生且只能發(fā)生這一組中的一個(gè)事件; ②任何事件,都是由這一組中的部分事件組成的。 這樣一組事件中的每一個(gè)事件稱(chēng)為基本事件,用來(lái)表示。 基本事件的全體,稱(chēng)為試驗(yàn)的樣本空間,用表示。 一
3、個(gè)事件就是由中的部分點(diǎn)(基本事件)組成的集合。通常用大寫(xiě)字母A,B,C,…表示事件,它們是的子集。 為必然事件,為不可能事件。 不可能事件()的概率為零,而概率為零的事件不一定是不可能事件;同理,必然事件(Ω)的概率為1,而概率為1的事件也不一定是必然事件。 (6) 事件的關(guān)系與運(yùn)算 ①關(guān)系: 如果事件A的組成部分也是事件B的組成部分,(A發(fā)生必有事件B發(fā)生): 如果同時(shí)有,,則稱(chēng)事件A與事件B等價(jià),或稱(chēng)A等于B:A=B。 A、B中至少有一個(gè)發(fā)生的事件:AB,或者A+B。 屬于A而不屬于B的部分所構(gòu)成的事件,稱(chēng)為A與B的差,記為A-B,也可表示為A-AB或者,它表示A發(fā)生而B(niǎo)
4、不發(fā)生的事件。 A、B同時(shí)發(fā)生:AB,或者AB。AB=Φ,則表示A與B不可能同時(shí)發(fā)生,稱(chēng)事件A與事件B互不相容或者互斥?;臼录腔ゲ幌嗳莸摹? Ω-A稱(chēng)為事件A的逆事件,或稱(chēng)A的對(duì)立事件,記為。它表示A不發(fā)生的事件?;コ馕幢貙?duì)立。 ②運(yùn)算: 結(jié)合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) 德摩根率: , (7) 概率的公理化定 義 設(shè)為樣本空間,為事件,對(duì)每一個(gè)事件都有一個(gè)實(shí)數(shù)P(A),若滿足下列三個(gè)條件: 1 0≤P(A)≤1, 2 P(Ω) =1 3
5、對(duì)于兩兩互不相容的事件,,…有 常稱(chēng)為可列(完全)可加性。 則稱(chēng)P(A)為事件的概率。 (8) 古典概型 1 , 2 。 設(shè)任一事件,它是由組成的,則有 P(A)= P = (9) 幾何概型 若隨機(jī)試驗(yàn)的結(jié)果為無(wú)限不可數(shù)并且每個(gè)結(jié)果出現(xiàn)的可能性均勻,同時(shí)樣本空間中的每一個(gè)基本事件可以使用一個(gè)有界區(qū)域來(lái)描述,則稱(chēng)此隨機(jī)試驗(yàn)為幾何概型。對(duì)任一事件A, 。其中L為幾何度量(長(zhǎng)度、面積、體積)。 (10) 加法公式 P(A+B)=P(A)+P(B)-P(AB) 當(dāng)P(AB)=0時(shí),P(A+B)=P(A)+P(B) (11) 減法公式 P(A-B)=P(A
6、)-P(AB) 當(dāng)BA時(shí),P(A-B)=P(A)-P(B) 當(dāng)A=Ω時(shí),P()=1- P(B) (12) 條件概率 定義 設(shè)A、B是兩個(gè)事件,且P(A)>0,則稱(chēng)為事件A發(fā)生條件下,事件B發(fā)生的條件概率,記為。 條件概率是概率的一種,所有概率的性質(zhì)都適合于條件概率。 例如:P(Ω/B)=1P(/A)=1-P(B/A) (13) 乘法公式 乘法公式: 更一般地,對(duì)事件A1,A2,…An,若P(A1A2…An-1)>0,則有 …………。 (14) 獨(dú)立性 ①兩個(gè)事件的獨(dú)立性 設(shè)事件、滿足,則稱(chēng)事件、是相互獨(dú)立的。 若事件、相互獨(dú)立,且,則有 若事件,相互獨(dú)立
7、,則可得到與,與,與也都相互獨(dú)立。 必然事件和不可能事件Φ與任何事件都相互獨(dú)立。 Φ與任何事件都互斥。 ②多個(gè)事件的獨(dú)立性 設(shè)A,B,C是三個(gè)事件,如果滿足兩兩獨(dú)立的條件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同時(shí)滿足P(ABC)=P(A)P(B)P(C) 那么A、B、C相互獨(dú)立。 對(duì)于n個(gè)事件類(lèi)似。 (15) 全概率公式 設(shè)事件滿足 1兩兩互不相容,, 2 , 則有 。 (16) 貝葉斯公式 (用于求后驗(yàn)概率) 設(shè)事件,,…,及滿足 1 ,,…,兩兩互不相容,>0,1,2,…,,
8、 2 ,且, 則 ,i=1,2,…n。 此公式即為貝葉斯公式。 ,(,,…,),通常叫先驗(yàn)概率。,(,,…,),通常稱(chēng)為后驗(yàn)概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果溯因”的推斷。 (17) 伯努利概型 我們作了次試驗(yàn),且滿足 u 每次試驗(yàn)只有兩種可能結(jié)果,發(fā)生或不發(fā)生; u 次試驗(yàn)是重復(fù)進(jìn)行的,即發(fā)生的概率每次均一樣; u 每次試驗(yàn)是獨(dú)立的,即每次試驗(yàn)發(fā)生與否與其他次試驗(yàn)發(fā)生與否是互不影響的。 這種試驗(yàn)稱(chēng)為伯努利概型,或稱(chēng)為重伯努利試驗(yàn)。 用表示每次試驗(yàn)發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗(yàn)中出現(xiàn)次的概率, ,。
9、 第二章 隨機(jī)變量及其分布 (1) 離散型隨機(jī)變量的分布律 設(shè)離散型隨機(jī)變量的可能取值為Xk(k=1,2,…)且取各個(gè)值的概率,即事件(X=Xk)的概率為 P(X=xk)=pk,k=1,2,…, 則稱(chēng)上式為離散型隨機(jī)變量的概率分布或分布律。有時(shí)也用分布列的形式給出: 。 顯然分布律應(yīng)滿足下列條件: (1),, (2)。 (2) 連續(xù)型隨機(jī)變量的分布密度 設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對(duì)任意實(shí)數(shù),有 , 則稱(chēng)為連續(xù)型隨機(jī)變量。稱(chēng)為的概率密度函數(shù)或密度函數(shù),簡(jiǎn)稱(chēng)概率密度。 密度函數(shù)具有下面4個(gè)性質(zhì): 1
10、, 2 , 3 , 4 。 (3) 離散與連續(xù)型隨機(jī)變量的關(guān)系 積分元在連續(xù)型隨機(jī)變量理論中所起的作用與在離散型隨機(jī)變量理論中所起的作用相類(lèi)似。 (4) 分布函數(shù) 設(shè)為隨機(jī)變量,是任意實(shí)數(shù),則函數(shù) 稱(chēng)為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個(gè)累積函數(shù)。 可以得到X落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(– ∞,x]的概率。 分布函數(shù)具有如下性質(zhì): 1 ; 2 是單調(diào)不減的函數(shù),即時(shí),有 ; 3 , ; 4 ,即是右連續(xù)的; 5 。 對(duì)于離散型隨機(jī)變量,; 對(duì)于連續(xù)型隨機(jī)變
11、量, 。 (5) 八大分布 0-1分布 即B(1,p) P(X=1)=p, P(X=0)=q 二項(xiàng)分布 即B(n,p) 在重貝努里試驗(yàn)中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機(jī)變量,設(shè)為,則可能取值為。 , 其中, 則稱(chēng)隨機(jī)變量服從參數(shù)為,的二項(xiàng)分布。記為。 當(dāng)時(shí),,,這就是0-1分布,所以0-1分布是二項(xiàng)分布的特例。 泊松分布 即P() 設(shè)隨機(jī)變量的分布律為 ,, k = 0,1,2…, 則稱(chēng)隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。 泊松分布是二項(xiàng)分布的極限分布(np=λ,n
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 川渝旅游日記成都重慶城市介紹推薦景點(diǎn)美食推薦
- XX國(guó)有企業(yè)黨委書(shū)記個(gè)人述責(zé)述廉報(bào)告及2025年重點(diǎn)工作計(jì)劃
- 世界濕地日濕地的含義及價(jià)值
- 20XX年春節(jié)節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)人到場(chǎng)心到崗
- 大唐女子圖鑒唐朝服飾之美器物之美繪畫(huà)之美生活之美
- 節(jié)后開(kāi)工第一課輕松掌握各要點(diǎn)節(jié)后常見(jiàn)的八大危險(xiǎn)
- 廈門(mén)城市旅游介紹廈門(mén)景點(diǎn)介紹廈門(mén)美食展示
- 節(jié)后開(kāi)工第一課復(fù)工復(fù)產(chǎn)十注意節(jié)后復(fù)工十檢查
- 傳統(tǒng)文化百善孝為先孝道培訓(xùn)
- 深圳城市旅游介紹景點(diǎn)推薦美食探索
- 節(jié)后復(fù)工安全生產(chǎn)培訓(xùn)勿忘安全本心人人講安全個(gè)個(gè)會(huì)應(yīng)急
- 預(yù)防性維修管理
- 常見(jiàn)閥門(mén)類(lèi)型及特點(diǎn)
- 設(shè)備預(yù)防性維修
- 2.乳化液泵工理論考試試題含答案