《高考數(shù)學(xué)專題復(fù)習(xí) 專題三第3講 推理與證明課件》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)專題復(fù)習(xí) 專題三第3講 推理與證明課件(38頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第3講推理與證明1(2012江西)觀察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,則a10b10A28B76C123D199解析觀察規(guī)律,歸納推理從給出的式子特點觀察可推知,等式右端的值,從第三項開始,后一個式子的右端值等于它前面兩個式子右端值的和,照此規(guī)律,則a10b10123.答案C真題感悟自主學(xué)習(xí)導(dǎo)引2(2012福建)某地區(qū)規(guī)劃道路建設(shè),考慮道路鋪設(shè)方案方案設(shè)計圖中,點表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,連線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達(dá)其余各城市,并且鋪設(shè)道路的總費用最小例如:在三個城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如
2、圖(1),則最優(yōu)設(shè)計方案如圖(2),此時鋪設(shè)道路的最小總費用為10.現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖(3),則鋪設(shè)道路的最小總費用為_解析根據(jù)題目中圖(3)給出的信息及題意,要求的是鋪設(shè)道路的最小總費用,且從任一城市都能到達(dá)其余各城市,可將圖(3)調(diào)整為如圖所示的結(jié)構(gòu)(線段下方的數(shù)字為兩城市之間鋪設(shè)道路的費用)此時鋪設(shè)道路的總費用為23123516.答案16具備一定的推理與證明能力是高考的一項基本要求歸納推理是高考考查的熱點,這類題目具有很好的區(qū)分度,考查形式一般為選擇題或填空題考題分析網(wǎng)絡(luò)構(gòu)建高頻考點突破考點一:合情推理【例1】(1)(2012武昌模擬)設(shè)fk(x)sin2 kxcos2k
3、x(xR),利用三角變換,估計fk(x)在k1,2,3時的取值情況,對kN時推測fk(x)的取值范圍是_(結(jié)果用k表示)審題導(dǎo)引(1)由f1(x)、f2(x)、f3(x)的取值范圍觀察規(guī)律可得;(2)注意發(fā)現(xiàn)其中的規(guī)律總結(jié)出共性加以推廣,或?qū)⒔Y(jié)論類比到其他方面,得出結(jié)論【規(guī)律總結(jié)】歸納推理與類比推理之區(qū)別(1)歸納推理是由部分到整體,由個別到一般的推理在進行歸納時,要先根據(jù)已知的部分個體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論(2)類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質(zhì),則另一個對象也具有類似的性質(zhì)在進行類比時,要充分考慮已知對象性質(zhì)
4、的推理過程,然后類比推導(dǎo)類比對象的性質(zhì)【變式訓(xùn)練】2平面內(nèi)有n條直線,其中任何兩條都不平行,任何三條不過同一點,試歸納它們的交點個數(shù)考點二:演繹推理【例2】求證:a,b,c為正實數(shù)的充要條件是abc0,且abbcca0和abc0.審題導(dǎo)引由a、b、c為正實數(shù),顯然易得abc0,abbcca0,abc0,即“必要性”的證明用直接法易于完成證明“充分性”時,要綜合三個不等式推出a、b、c是正實數(shù),有些難度、需用反證法規(guī)范解答(1)證必要性(直接證法):因為a、b、c為正實數(shù),所以abc0,abbcca0,abc0.所以必要性成立(2)證充分性(反證法):假設(shè)a、b、c不全為正實數(shù)(原結(jié)論是a、b、
5、c都是正實數(shù)),由于abc0,則它們只能是二負(fù)一正不妨設(shè)a0,b0,c0,又由于abbcac0a(bc)bc0,因為bc0,所以a(bc)0.又a0,所以bc0.而abc0,所以a(bc)0.所以a0,與a0的假設(shè)矛盾故假設(shè)不成立,原結(jié)論成立,即a、b、c均為正實數(shù)【規(guī)律總結(jié)】1演繹推理問題的處理方法從思維過程的指向來看,演繹推理是以某一類事物的一般判斷為前提,而作出關(guān)于該類事物的判斷的思維形式,因此是從一般到特殊的推理數(shù)學(xué)中的演繹法一般是以三段論的格式進行的三段論由大前提、小前提和結(jié)論三個命題組成,大前提是一個一般性原理,小前提給出了適合于這個原理的一個特殊情形,結(jié)論則是大前提和小前提的邏輯
6、結(jié)果2適用反證法證明的六種題型反證法是一種重要的間接證明方法,適用反證法證明的題型有:(1)易導(dǎo)出與已知矛盾的命題;(2)否定性命題;(3)唯一性命題;(4)至少至多型命題;(5)一些基本定理;(6)必然性命題等 【變式訓(xùn)練】考點三:數(shù)學(xué)歸納法【規(guī)律總結(jié)】使用數(shù)學(xué)歸納法需要注意的三個問題在使用數(shù)學(xué)歸納法時還要明確:(1)數(shù)學(xué)歸納法是一種完全歸納法,其中前兩步在推理中的作用是:第一步是遞推的基礎(chǔ),第二步是遞推的依據(jù),二者缺一不可;(2)在運用數(shù)學(xué)歸納法時,要注意起點n,并非一定取1,也可能取0,2等值,要看清題目;(3)第二步證明的關(guān)鍵是要運用歸納假設(shè),特別要弄清楚由k到k1時命題變化的情況【變
7、式訓(xùn)練】名師押題高考【押題1】已知“整數(shù)對”按如下規(guī)律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),則第60個整數(shù)對是A(7,5) B(5,7)C(2,10) D(10,1)答案B押題依據(jù)能用歸納和類比進行簡單的推理是高考對合情推理的基本要求相比較而言,歸納推理是高考的一個熱點本題體現(xiàn)了歸納對推理的思想,需從所給的數(shù)對中總結(jié)歸納出其規(guī)律,進而推導(dǎo)出第60個整數(shù)對題目不難,體現(xiàn)了高考的熱點,故押此題押題依據(jù)歸納和類比是兩種重要的思維形式,是高考的熱點,通常以選擇題或填空題的形式考查本題以數(shù)列知識為背景,考查類比推理,題目不難,但具有較好的代表性,故押此題課時訓(xùn)練提能課時訓(xùn)練提能本講結(jié)束請按ESC鍵返回