高考數(shù)學一輪總復習 第五章 數(shù)列、推理與證明 第4講 數(shù)列的求和課件 理

上傳人:沈*** 文檔編號:51842000 上傳時間:2022-02-03 格式:PPT 頁數(shù):27 大小:1.49MB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學一輪總復習 第五章 數(shù)列、推理與證明 第4講 數(shù)列的求和課件 理_第1頁
第1頁 / 共27頁
高考數(shù)學一輪總復習 第五章 數(shù)列、推理與證明 第4講 數(shù)列的求和課件 理_第2頁
第2頁 / 共27頁
高考數(shù)學一輪總復習 第五章 數(shù)列、推理與證明 第4講 數(shù)列的求和課件 理_第3頁
第3頁 / 共27頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學一輪總復習 第五章 數(shù)列、推理與證明 第4講 數(shù)列的求和課件 理》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學一輪總復習 第五章 數(shù)列、推理與證明 第4講 數(shù)列的求和課件 理(27頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第4講數(shù)列的求和考綱要求考點分布考情風向標1.掌握等差數(shù)列、等比數(shù)列的求和公式.2.了解一般數(shù)列求和的幾種方法2013年新課標卷考查裂項相消法數(shù)列求和;2013年大綱卷考查裂項相消法數(shù)列求和;2014年新課標卷考查錯位相減法數(shù)列求和從近兩年的高考試題來看,對等差、等比數(shù)列的求和,以考查公式為主;對非等差、非等比數(shù)列的求和,主要考查分組求和、裂項相消法、錯位相減法等.題型既有選擇題、填空題,又有解答題,屬較難題目公式法分組求和裂項相消錯位相減等差數(shù)列等比數(shù)列把一個數(shù)列分成幾個可以直接求和的數(shù)列有時把一個數(shù)列的通項公式分成兩項差的形式,相加過程消去中間項,只剩下有限項再求和適用于一個等差數(shù)列和一個

2、等比數(shù)列對應項相乘構(gòu)成的數(shù)列求和數(shù)列求和2.若數(shù)列an滿足a11,an12an(nN*),則a5_,前 8 項的和 S8_(用數(shù)字作答).B16255120考點 1 公式或分組法求和所以ana1(n1)dn2.例1:(2015年福建)等差數(shù)列an中,a24,a4a715.(1)求數(shù)列an的通項公式;【規(guī)律方法】若一個數(shù)列是由等比數(shù)列和等差數(shù)列組成,則求和時,可采用分組求和,即先分別求和,再將各部分合并.【互動探究】(1)求數(shù)列an的通項公式;考點 2 裂項相消法求和例2:(2015年安徽)已知數(shù)列an是遞增的等比數(shù)列,且a1a49,a2a38.(1)求數(shù)列an的通項公式;前 n 項和 Tn.【

3、互動探究】考點 3 錯位相減法求和例3:(2014年新課標)已知an是遞增的等差數(shù)列,a2,a4是方程x25x60的根.(1)求an的通項公式;【規(guī)律方法】(1)一般地,如果數(shù)列an是等差數(shù)列,bn是等比數(shù)列,求數(shù)列anbn的前n項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列bn的公比,然后作差求解.(2)在寫出“Sn”與“qSn”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“SnqSn”的表達式.【互動探究】3.(2015年湖北)設(shè)等差數(shù)列an的公差為d,前n項和為Sn,等比數(shù)列bn的公比為q.已知b1a1,b22,qd,S10100.(1)求數(shù)列an,bn的通項公式;思

4、想與方法放縮法在數(shù)列中的應用【規(guī)律方法】本題要利用放縮技巧構(gòu)造裂項相消法求和.本題的關(guān)鍵在于能否看出條件方程能十字相乘求出Sn,然后利用anSnSn1求an,觀察2013年江西卷與2014年廣東卷何其相似,請記住,它山之石,可以攻玉!數(shù)列求和常見類型及方法1.anknb型,利用等差數(shù)列的前n項和公式直接求解.2.ana1qn1型,利用等比數(shù)列的前n項和直接求解,但要注意對q分q1與q1兩種情況進行討論.3.anbncn,數(shù)列bn,cn是等比數(shù)列或是等差數(shù)列,采用分組求和.4.anbncn,數(shù)列bn是等差數(shù)列,cn是等比數(shù)列,采用錯位相減法求和,在應用錯位相減法時,要注意觀察未合并項的正負號.5.對于通項可化為anf(n)f(n1)形式的數(shù)列,采用裂項相消法求和,在應用裂項相消法時,要注意消項的規(guī)律具有對稱性,即前剩多少項則后剩多少項.6.對于ankakc(c為常數(shù)),可考慮采用倒序相加求和.7.an(1)nf(n),可采用相鄰兩項合并求解,即采用“并項法”求和.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!