《湖南省中考數(shù)學(xué)復(fù)習(xí) 第3單元 函數(shù)及其圖象 第13課時(shí) 反比例函數(shù)課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《湖南省中考數(shù)學(xué)復(fù)習(xí) 第3單元 函數(shù)及其圖象 第13課時(shí) 反比例函數(shù)課件(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第三單元 函數(shù)及其圖象第13課時(shí) 反比例函數(shù)考綱考點(diǎn)考綱考點(diǎn)反比例函數(shù)反比例函數(shù)的圖象及性質(zhì),湖南中考各市2016年14考、2015年13考,預(yù)測(cè)2017年湖南中考大部分區(qū)市仍將考查一道.知識(shí)體系圖知識(shí)體系圖反比例函數(shù)概念圖象性質(zhì)解析式(待定系數(shù)法)綜合形狀位置對(duì)稱性與坐標(biāo)軸的位置關(guān)系象限分布情況系數(shù)k的幾何意義增減性與平面圖形結(jié)合與一次函數(shù)結(jié)合3.3.1 反比例函數(shù)的概念反比例函數(shù)的概念1.定義:形如 (k0,k為常數(shù))的函數(shù)叫做反比例函數(shù),期中x為自變量,y是x的函數(shù).2.反比例函數(shù)的表示:kyx 110 .20 .30 .kykxykxkxyk k3.3.2 反比例函數(shù)的圖象與性質(zhì)反比例
2、函數(shù)的圖象與性質(zhì)1.圖象:反比例函數(shù) (k0)的圖象是雙曲線,且關(guān)于原點(diǎn)對(duì)稱.2.性質(zhì):(1)當(dāng)k0時(shí),圖象的兩個(gè)分支在第一、三象 限, 在每一個(gè)象限內(nèi),y隨x增大而減小. (2)當(dāng)k0時(shí),圖象的兩個(gè)分支在第二、四象 限,在每一個(gè)象限內(nèi),y隨x增大而增大.kyxy =xkxy(k0)Oxyxky =O(k0)3.k的意義:在反比例函數(shù) 的圖象上任取一點(diǎn),過這點(diǎn)分別作x軸、y軸平行線,兩平行線與坐標(biāo)軸圍成的矩形面積等于 .kyxk3.3.3 求反比例函數(shù)的解析式求反比例函數(shù)的解析式待定系數(shù)法求反比例函數(shù)的解析式:1.設(shè):設(shè)出反比例函數(shù)解析式的一般形式 (k0);2.代:將x,y的對(duì)應(yīng)值代入解析式
3、 中,得到含有待定系數(shù)的方程或方程組;3.求:求出待定系數(shù)k的值;4.寫:將所求待定系數(shù)的值代入所設(shè)的函數(shù)解析式中kyxkyx正比例函數(shù)與反比例函數(shù)的區(qū)別正比例函數(shù)與反比例函數(shù)的區(qū)別函數(shù)正比例函數(shù)反比例函數(shù)解析式y(tǒng)=kx+b(k0) (k0)圖象形狀直線雙曲線k0位置一三象限一三象限增減性y隨x增大而增大y隨x增大而減小(x0或x0)k0位置二四象限二四象限增減性y隨x增大而減小y隨x增大而增大(x0或x0)kyx當(dāng)k0時(shí),反比例函數(shù) 和一次函數(shù)y=kx+2的圖象大致是 ( C ) 本題考查了反比例函數(shù)與一次函數(shù)的圖象與性質(zhì),k0,反比例函數(shù)圖象在一三象限,且一次函數(shù)圖象必過一、三象限,故排除
4、B、D選項(xiàng).又20,一次函數(shù)圖象與y軸交點(diǎn)在原點(diǎn)正上方,所以A選項(xiàng)不符合題意.故選擇D選項(xiàng).kyx如圖,直線lx軸于點(diǎn)P,且與反比例函數(shù) 及 的圖象分別交于點(diǎn)A,B,連接OA,OB,已知OAB的面積為2,則k1-k2= 4 .此題考查了反比例函數(shù)的系數(shù)k的幾何意義,根據(jù)k的幾何意義可得,k1=2SAOP,k2=2SBOP,SAOB=SAOP-SBOP= (k1-k2)=2,k1-k2=2SAOB=22=4.答案為4.110kyxx220kyxx12)已知點(diǎn)(m-1,y1),(m-3,y2)是反比例函數(shù) 圖象上兩點(diǎn),則y1 y2(填“”“=”或“”).此題考查了反比例函數(shù)的增減性,由題m0可知,
5、此反比例函數(shù)在x0時(shí),y隨x增大而增大.m0,m-10,m-30,且m-1m-3,所以y1y2.0mymx如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù) 的圖象在第一象限內(nèi)交于點(diǎn)A(4,3),與y軸負(fù)半軸交于點(diǎn)B,且OA=OB.(1)求函數(shù)y=kx+b和 的表達(dá)式;(2)已知點(diǎn)C(0,5),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC,求此時(shí)點(diǎn)M的坐標(biāo).ayxayx解:(1)把點(diǎn)A(4,3)代入函數(shù) 得:a=12, . ,OA=OB,OB=5, 點(diǎn)B的坐標(biāo)為(0,-5), 把B(0,-5),A(4,3)代入y=kx+b得: 解得: y=2x-5. (2)點(diǎn)M在一次函數(shù)y=2x-5上,設(shè)點(diǎn)M坐標(biāo)為(x,2x-5), MB=MC, 解得:x=2.5,點(diǎn)M的坐標(biāo)為(2.5,0).ayx12yx22345OA 543bkb 25kb2222255255xxxx本題考查了反比例函數(shù)與一次函數(shù)的綜合應(yīng)用,考查了利用待定系數(shù)法求反比例函數(shù)以及一次函數(shù)的解析式,考查了點(diǎn)到點(diǎn)的距離等.