基于AutoCAD汽車驅動橋結構設計【含5張CAD圖紙】
基于AutoCAD汽車驅動橋結構設計【含5張CAD圖紙】,含5張CAD圖紙,基于,AutoCAD,汽車,驅動,結構設計,CAD,圖紙
畢業(yè)設計(論文)中期檢查表
學生姓名
學號
班 級
指導教師
職稱
單 位
畢業(yè)設計(論文)題目
基于AUTOCAD汽車驅動橋結構設計
已完成工作、存在的問題及下一步的打算
已完成的工作:
1、通過指導老師所提供的任務書、圖書館的資料以及網(wǎng)絡資源,收集整理所寫。
2、論文的相關文獻,寫出了開題報告和任務書。
3、完成外文翻譯和文獻綜述。
4、設計說明書已完成
5、繪圖完成。
6、需要進一步完善。
下一步打算:
進一步修改完善并裝訂。
學生簽名:
年 月 日
檢查意見
指導教師簽名:
年 月 日
畢業(yè)設計(論文)開題報告
學生姓名
學號
專業(yè)班級
指導教師
職稱
單 位
中國地質大學長城學院
課題性質
設計□ 論文□
課題來源
科研□ 教學□ 生產□ 其它□
畢業(yè)設計(論文)題目
基于AutoCAD夏利A+汽車驅動橋結構設計
一、研究目的及意義
新中國成立以前我國沒有汽車制造專業(yè)自1953年在長春興建一汽車制造汽廠,1956年制造出第一輛解放牌運輸車,宣告了中國布不能生產汽車歷史的結束,中國汽車行業(yè)現(xiàn)在已經獲得了長足發(fā)展。
現(xiàn)在中國汽車工業(yè)已成為世界汽車工業(yè)的重要組成部分,改革開放20年來與國際上各大汽車及零部件制造商相繼建立了600余家中外合資企業(yè),積累了資本200多億美元,引進了1000多項汽車技術,絕大部分都與國外處于同等水平;2002年,汽車進出口貿易總額達100億元,占世界汽車市場的二十分之一的份額。2010年我國汽車產量的目標是600萬輛,站世界汽車市場的十分之一;若按百分之五的增長率計算,2020年我國的汽車產量將達到1000萬輛,將占世界 的五分之一,中國的汽車行業(yè)將由生產大國走向強國。
中國的本土的設計能力跟國際先進水平還有一定差距,在國內汽車專利的申請還是跨國公司占絕大多數(shù),所以中國要進一步發(fā)展汽車的行業(yè),應該在自主設計和創(chuàng)新方面做出更大努力。驅動橋設計是汽車設計重要組成部分,汽車的驅動橋位于傳動系的末端,其基本功用是增大有傳動軸或直接由變速器傳來的轉矩,將轉矩分配給左右驅動車輪;并使左右驅動車輪具有汽車行駛運動學所要求的差速功能。同時驅動橋還要承受作用于路面和車架或承載式車身之間的力和力矩。汽車車橋的結構形式和設計參數(shù)除對汽車的可靠性與耐久性有重要的影響外,也對汽車的行駛性能如動力性經濟性平順性通過性機動性和操作穩(wěn)定性等有直接影響。
二、研究現(xiàn)狀
為適應不斷完善社會主義市場經濟體制的要求以及加入世貿組織后國內外汽車產業(yè)發(fā)展的新形勢,推進汽車產業(yè)結構調整和升級,全面提高汽車產業(yè)國際競爭力,滿足消費者
對汽車產品日益增長的需求,促進汽車產業(yè)健康發(fā)展,特制定汽車產業(yè)發(fā)展政策。通過該政策的實施,使我國汽車產業(yè)在2010年前發(fā)展成為國民經濟的支柱產業(yè),為實現(xiàn)全面建設小康社會的目標做出更大的貢獻。政府職能部門依據(jù)行政法規(guī)和技術規(guī)范的強制性要求,對汽車、農用運輸車(低速載貨車及三輪汽車,下同)、摩托車和零部件生產企業(yè)及其產品實施管理,規(guī)范各類經濟主體在汽車產業(yè)領域的市場行為。低速載貨汽車,在汽車發(fā)展趨勢中,有著很好的發(fā)展前途。生產出質量好,操作簡便,價格便宜的低速載貨汽車將適合大多數(shù)消費者的要求。在國家積極投入和支持發(fā)展汽車產業(yè)的同時,能研制出適合中國國情,包括道路條件和經濟條件的車輛,將大大推動汽車產業(yè)的發(fā)展和社會經濟的提高
在新政策《汽車產業(yè)發(fā)展政策》中,在2010年前,我國就要成為世界主要汽車制造國,汽車產品滿足國內市場大部分需求并批量進入國際市場;2010年,汽車生產企業(yè)要形成若干馳名的汽車、摩托車和零部件產品品牌;通過市場競爭形成幾家具有國際競爭力的大型汽車企業(yè)集團,力爭到2010年跨入世界500強企業(yè)之列,等等。同時,在這個新的汽車產業(yè)政策描繪的藍圖中,還包含許多涉及產業(yè)素質提高和市場環(huán)境改善的綜合目標,著實令人鼓舞。然而,不可否認的是,國內汽車產業(yè)的現(xiàn)狀離產業(yè)政策的目標還有相當?shù)木嚯x。自1994年《汽車工業(yè)產業(yè)政策》頒布并執(zhí)行以來,國內汽車產業(yè)結構有了顯著變化,企業(yè)規(guī)模效益有了明顯改善,產業(yè)集中度有了一定程度提高。但是,長期以來困擾中國汽車產業(yè)發(fā)展的散、亂和低水平重復建設問題,還沒有從根本上得到解決。多數(shù)企業(yè)家預計,在新的汽車產業(yè)政策的鼓勵下,將會有越來越多的汽車生產企業(yè)按照市場規(guī)律組成企業(yè)聯(lián)盟,實現(xiàn)優(yōu)勢互補和資源共享
三、研究內容和要求
1. 選擇適當?shù)闹鳒p速比,以保證汽車在給定的條件下具有最佳的動力性和燃油經濟性。 2.外廓尺寸小,保證汽車具有足夠的離地間隙,以滿足通過性的要求。
3.齒輪及其他傳動件工作平穩(wěn),噪聲小,且在各種載荷和轉速工況下有較高的傳動效率。
4.具有足夠的強度和剛度,以承受和傳遞作用于路面和車架或車身間的各種力力矩;在此條件下,盡可能降低質量,尤其是簧下質量,減少不平路面的沖擊載荷,提高汽車的平順性。
5.與懸架導向機構運動協(xié)調,結構簡單,加工工藝性好,制造容易,維修,調整方便。
研究方案
1.總體方案的分析論證;
2.主減速器的結構形式選擇,基本參數(shù)選擇和設計計算;
3.差速器的結構形式選擇;
4.齒輪的結構設計、圖樣及技術要求;
5.根據(jù)設計計算尺寸用 AutoCAD 繪制驅動橋的主要零件圖和裝配圖;
四、整個設計時間安排
12月21 日~12月24日 完成開題報告
12月24 日~12月30日 完成總體方案初步確定
1 月1 日~1月31日 驅動橋方案分析
2月1 日~3月10日 主減速器設計
3月11 日~4月20日 差減速器設計
4月21日~5月7日 圖紙的繪制
5月8 日~5月19日 評閱、畢業(yè)答辯
五、預期結果
設計出夏利的驅動橋,包括主減速器、差速器,配合其他同組同學,協(xié)調設計車輛的全局。使設計出的產品使用方便,材料使用最少,經濟性能最高。
a. 提高汽車的技術水平,使其使用性能更好,更安全,更可靠,更經濟,更舒適,更機動,更方便,動力性更好,污染更少。
b. 改善汽車的經濟效果,調整汽車在產品系列中的檔次,以便改善其市場競爭地位并獲得更大的經濟效益
六、參考文獻
1 劉惟信.汽車車橋設計M.北京:清華大學出版社2004.
2 徐顥.機械設計手冊M.北京:機械工業(yè)出版社1991.
3 王望予.汽車設計M.北京:機械工業(yè)出版社2004.
4 陳家瑞.汽車構造M.北京:機械工業(yè)出版社2005.
5 朱孝錄.齒輪傳動設計手冊M.北京:化學工業(yè)出版社2005.
6 邱宣懷.機械設計M.北京:高等教育出版社1997.
7 廖念釗.互換性與技術測量M.北京:中國計量出版社2000.
8 王明珠.工程制圖學及計算機繪圖M.北京:國防工業(yè)出版社1998
9 戴少度.材料力學M.北京:國防工業(yè)出版社2002.
10 申永勝.機械原理教程M.北京:清華大學出版社2003.
11 劉朝儒.機械制圖M.北京:高等教育出版社2001.
12 吳宗澤.機械零件設計手冊M.北京:機械工業(yè)出版社2004.
13 李華.機械制造設計M.北京:機械工業(yè)出版社1997.
14 王宗榮、左曉名、魯屏宇.工程圖學M.北京:機械工業(yè)出版社,2001.
15 成大先.機械設計手冊單行本機械傳動M.北京:化學工業(yè)出版社,2004.
16 李云.機械制造工藝學M.北京:機械工業(yè)出版社1994.
17 王先奎.計算機輔助制造M.北京:機械工業(yè)出版社1995.
18 龐懷玉.機械制造工程學M.北京:機械工業(yè)出版社1997.
19 阮忠唐.機械無級變速M.北京:機械工業(yè)出版社1988.
20 吳宗澤.機械零件習題集M.北京:高等教育出版社1992.?
指導教師意見:
指導教師簽名:
年 月 日
教研室意見:
審查結果: 同 意□ 不 同 意□
教研室主任簽名:
年 月 日
目 錄
1.緒 論 1
1.1研究本課題的目的和意義 1
1.2主減速器的定義種類功用 1
1.3本次設計的主要內容 2
2.主減速器的設計 3
2.1主減速器的結構型式的選擇 3
2.1.1主減速器的減速型式 3
2.1.2主減速器齒輪的類型的選擇 4
2.1.3主減速器主動錐齒輪的支承形式 6
2.1.4主減速器從動錐齒輪的支承形式及安置方法 7
2.2主減速器的基本參數(shù)選擇與設計計算 7
2.2.1主減速器計算載荷的確定 7
2.2.2主減速器基本參數(shù)的選擇 9
2.2.3主減速器雙曲面齒輪的幾何尺寸計算 12
2.2.4主減速器雙曲面齒輪的強度計算 19
2.2.5主減速器齒輪的材料及熱處理 23
2.3主減速器軸承的選擇 24
2.3.1計算轉矩的確定 24
2.3.2齒寬中點處的圓周力 24
2.3.3雙曲面齒輪所受的軸向力和徑向力 24
2.3.4主減速器軸承載荷的計算及軸承的選擇 25
2.4本章小結 29
3. 差速器設計 30
3.1差速器結構形式的選擇 30
3.2對稱式圓錐行星齒輪差速器的差速原理 31
3.3對稱式圓錐行星齒輪差速器的結構 32
3.4對稱式圓錐行星齒輪差速器的設計 33
3.4.1差速器齒輪的基本參數(shù)的選擇 33
3.4.2差速器齒輪的幾何計算 35
3.4.3差速器齒輪的強度計算 36
3.5本章小結 37
結 論 38
參考文獻 39
致 謝 40
1.緒 論
1.1研究本課題的目的和意義
主減速器是驅動橋的重要組成部分,其性能的好壞直接影響到車輛的動力性、經濟性。目前,國內減速器行業(yè)重點骨干企業(yè)的產品品種、規(guī)格及參數(shù)覆蓋范圍近幾年都在不斷擴展,產品質量已達到國外先進工業(yè)國家同類產品水平,完全可承擔起為我國汽車行業(yè)提供傳動裝置配套的重任,部分產品還出口至歐美及東南亞地區(qū)。由于計算機技術、信息技術和自動化技術的廣泛應用,主減速器將有更進一步的發(fā)展。對主減速器的研究能極大地促進我國的汽車工業(yè)的發(fā)展。
1.2主減速器的定義種類功用
主減速器是傳動系的一部分,與差速器,車輪傳動裝置和橋殼共同組成驅動橋。主減速器的功用是增扭,降速,改變轉矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉矩,并將轉矩傳遞給差速器。
在現(xiàn)代汽車驅動橋上,主減速器種類很多,包括單級減速、雙級減速、雙速減速、單級貫通、雙級貫通、主減速及輪邊減速等。其中應用得最廣泛的是采用螺旋錐齒輪和雙曲面齒輪的單級主減速器。在雙級主減速器中,通常還要加一對圓柱齒輪(多采用斜齒圓柱齒輪),或一組行星齒輪。在輪邊減速器中則常采用普通平行軸式布置的斜齒圓柱齒輪傳動或行星齒輪傳動。在某些公共汽車、無軌電車和超重型汽車的主減速器上,有時也采用蝸輪傳動。
單級螺旋錐齒輪減速器其主、從動齒輪軸線相交于一點。交角可以是任意的,但在絕大多數(shù)的汽車驅動橋上,主減速齒輪副都是采用90o交角的布置。由于輪齒端面重疊的影響,至少有兩對以上的輪齒同時嚙合,因此,螺旋錐齒輪能承受大的負荷。加之其輪齒不是在齒的全長上同時嚙合,面是逐漸地由齒的一端連續(xù)而平穩(wěn)地轉向另—端,使得其工作平穩(wěn),即使在高速運轉時,噪聲和振動也是很小的。
單級雙曲面齒輪其主、從動齒輪軸線不相交而呈空間交叉。其空間交叉角也都是采用90o。主動齒輪軸相對于從動齒輪軸有向上或向下的偏移,稱為上偏置或下偏置。這個偏移量稱為雙曲面齒輪的偏移距。當偏移距大到一定程度時,可使一個齒輪軸從另一個齒輪軸旁通過。這樣就能在每個齒輪的兩邊布置尺寸緊凄的支承。這對于增強支承剛度、保證輪齒正確嚙合從而提高齒輪壽命大有好處。雙曲面齒輪的偏移距使得其主動齒輪的螺旋角大于從動齒輪的螺旋角。因此,雙曲面?zhèn)鲃育X輪副的法向模數(shù)或法向周節(jié)雖相等,但端面模數(shù)或端面周節(jié)是不等的。主動齒輪的端面模數(shù)或端面周節(jié)大于從動齒輪的。這一情況就使得雙曲面齒輪傳動的主動齒輪比相應的螺旋錐齒輪傳動的主動齒輪有更大的直徑和更好的強度和剛度。其增大的程度與偏移距的大小有關。另外,由于雙曲面?zhèn)鲃拥闹鲃育X輪的直徑及螺旋角都較大,所以相嚙合齒輪的當量曲率半徑較相應的螺旋錐齒輪當量曲率半徑為大,從而使齒面間的接觸應力降低。隨偏移距的不同,雙曲面齒輪與接觸應力相當?shù)穆菪F齒輪比較,負荷可提高至175%。雙曲面主動齒輪的螺旋角較大,則不產生根切的最少齒數(shù)可減少,所以可選用較少的齒數(shù),這有利于大傳動比傳動。當要求傳動比大而輪廓尺寸又有限時,采用雙曲面齒輪更為合理。因為如果保持兩種傳動的主動齒輪直徑一樣,則雙曲面從動齒輪的直徑比螺旋錐齒輪的要小,這對于主減速比大于4.5的傳動有其優(yōu)越性。當傳動比小于2時,雙曲面主動齒輪相對于螺旋錐齒輪主動齒輪就顯得過大,這時選用螺旋錐齒輪更合理,因為后者具有較大的差速器可利用空間。
由于雙曲面主動齒輪螺旋角的增大,還導致其進入嚙合的平均齒數(shù)要比螺旋錐齒輪相應的齒數(shù)多,因而雙曲面齒輪傳動比螺旋錐齒輪傳動工作得更加平穩(wěn)、無噪聲,強度也高。雙曲面齒輪的偏移距還給汽車的總布置帶來方便。例如,在乘用車上當主減速器采用下偏置(這時主動齒輪為左旋)的雙曲面齒輪時,可降低傳動軸的高度,從而降低了車廂地板高度或減小了因設置傳動軸通道而引起的地板凸起高度,進而可使車輛的外形高度減小。
單級圓柱齒輪主減速器只在節(jié)點處一對齒廓表面為純滾動接觸而在其他嚙合點還伴隨著沿齒廓的滑動一樣,螺旋錐齒輪與雙曲面齒輪傳動都有這種沿齒廓方向的滑動。此外,雙曲面齒輪傳動還具有沿齒長方向的縱向滑動。這種滑動有利于唐合,促使齒輪副沿整個齒面都能較好地嚙合,因而更促使其工作平穩(wěn)和無噪聲。但雙曲面齒輪的縱向滑動產生較多的熱量,使接觸點的溫度升高,因而需要用專門的雙曲面齒乾油來潤滑,且其傳動效率比螺旋錐齒輪略低,達96%。其傳動效率與倔移距有關,特別是與所傳遞的負荷大小及傳動比有關。負荷大時效率高。螺旋錐齒輪也是一樣,其效率可達99%。兩種齒輪在載荷作用下對安裝誤差的敏感性本質上是相同的。如果螺旋錐齒輪的螺旋角與相應的雙曲面主、從動齒輪螺旋角的平均值相同,則雙曲面主動齒輪的螺旋角比螺旋錐齒輪的大,而其從動齒輪的螺旋角則比螺旋錐齒輪的小,因而雙曲面主動齒輪的軸向力比螺旋錐齒輪的大,而從動齒輪的軸向力比螺旋錐齒輪的小。兩種齒輪都在同樣的機床上加工,加工成本基本相同。然而雙曲面?zhèn)鲃拥男↓X輪較大,所以刀盤刀頂距較大,因而刀刃壽命較長。單級蝸桿-蝸輪主減速器在汽車驅動橋上也得到了一定應用。在超重型汽車上,當高速發(fā)動機與相對較低車速和較大輪胎之間的配合要求有大的主減速比(通常8~14)時,主減速器采用一級蝸輪傳動最為方便,而采用其他齒輪時就需要結構較復雜、輪廓尺寸及質量均較大、效率較低的雙級減速。與其他齒輪傳動相比,它具有體積及質量小、傳動比大、運轉非常平穩(wěn)、最為靜寂無噪聲、便于汽車的總體布置及貫通式多橋驅動的布置、能傳遞大載荷、使用壽命長、傳動效率高、結構簡單、拆裝方便、調整容易等一系列的優(yōu)點。其惟一的缺點是耍用昂貴的有色金屬的合金(青銅)制造,材料成本高,因此未能在大批量生產的汽車上推廣。
1.3本次設計的主要內容
本設計的目標是設計一種滿載質量為5t的輕型載貨汽車的主減速器,本設計主要研究的內容有:主減速器的齒輪類型、主減速器的減速形式、主減速器主動齒輪和從動錐齒輪的支承形式、主減速器計算載荷的確定、主減速器基本參數(shù)的選擇、主減速器齒輪的材料及熱處理、主減速器軸承的計算、對稱式圓錐行星齒輪差速器的差速原理、對稱式圓錐行星齒輪差速器的結構、對稱式圓錐行星齒輪差速器的設計。
2.主減速器的設計
2.1主減速器的結構型式的選擇
主減速器的結構型式,主要是根據(jù)其齒輪類型、主動齒輪和從動齒輪的安置方法以及減速型式的不同而異。
2.1.1主減速器的減速型式
主減速器的減速型式分為單級減速、雙級減速、雙速減速、單級貫通、雙級貫通、主減速及輪邊減速等。
(1)單級主減速器
如圖2.1所示為單級主減速器。由于單級主減速器具有結構簡單、質量小、尺寸緊湊及制造成本低廉的優(yōu)點,廣泛用在主減速比i<7.6的各種中、小型汽車上。單級主減速器都是采用一對螺旋錐齒輪或雙曲面齒輪,也有采用蝸輪傳動的。
圖2.1單極主減速器 圖2.2雙級主減速器
(2)雙級減速
如圖2.2所示為雙級主減速器。由兩級齒輪減速器組成,結構復雜、質量加大,制造成本也顯著增加,因此僅用于主減速比較大(7.60時可取=2.0;
(2.2)
——汽車滿載時的總質量在此取5455 ,此數(shù)據(jù)此參考解放CA1050輕型載貨汽車;
所以由式(2.2)得: 0.195 =35>16
即<0 所以=1.0
——該汽車的驅動橋數(shù)目在此取1;
——傳動系上傳動部分的傳動效率,在此取0.9。
根據(jù)以上參數(shù)可以由(2.1)得:
==6211
(2)按驅動輪打滑轉矩確定從動錐齒輪的計算轉矩
(2.3)
式中:
——汽車滿載時一個驅動橋給水平地面的最大負荷,在此取32550N,此數(shù)據(jù)此參考解放CA1051輕型載貨汽車;
——輪胎對路面的附著系數(shù),對于安裝一般輪胎的公路用汽車,取=0.85;對越野汽車取=1.0;對于安裝專門的肪滑寬輪胎的高級轎車取=1.25;在此取=0.85;
——車輪的滾動半徑,在此選用輪胎型號為7.50-16,滾動半徑為 0.394m;
,——分別為所計算的主減速器從動錐齒輪到驅動車輪之間的傳動效率和傳動比,取0.9,由于沒有輪邊減速器取1.0。
所以由公式(2.3)得:
==12112
(3)按汽車日常行駛平均轉矩確定從動錐齒輪的計算轉矩
對于公路車輛來說,使用條件較非公路車輛穩(wěn)定,其正常持續(xù)的轉矩根據(jù)所謂的平均牽引力的值來確定:
(2.4)
式中:
——汽車滿載時的總重量,在此取54550N;
——所牽引的掛車滿載時總重量,N,但僅用于牽引車的計算;
——道路滾動阻力系數(shù),對于載貨汽車可取0.015~0.020;在此取0.018;
——汽車正常行駛時的平均爬坡能力系數(shù),對于載貨汽車可取0.05~0.09在此取0.07;
——汽車的性能系數(shù)在此取0;
,——分別為所計算的主減速器從動錐齒輪到驅動車輪之間的傳動效率和傳動比,取0.9,由于沒有輪邊減速器取1.0;
——該汽車的驅動橋數(shù)目在此取1;
——車輪的滾動半徑,在此選用輪胎型號為7.50-16,滾動半徑為 0.394m。
所以由式(2.4)得:
==2101.5
2.2.2主減速器基本參數(shù)的選擇
(1)主、從動錐齒輪齒數(shù)和
選擇主、從動錐齒輪齒數(shù)時應考慮如下因素:
①為了磨合均勻,,之間應避免有公約數(shù);
②為了得到理想的齒面重合度和高的輪齒彎曲強度,主、從動齒輪齒數(shù)和應不小于40;
③為了嚙合平穩(wěn),噪聲小和具有高的疲勞強度對于商用車一般不小于6;
④主傳動比較大時,盡量取得小一些,以便得到滿意的離地間隙;
⑤對于不同的主傳動比,和應有適宜的搭配。
(2)從動錐齒輪大端分度圓直徑和端面模數(shù)
對于單級主減速器,增大尺寸會影響驅動橋殼的離地間隙,減小又會影響跨置式主動齒輪的前支承座的安裝空間和差速器的安裝。
可根據(jù)經驗公式初選,即
(2.5)
——直徑系數(shù),一般取13.0~16.0;
——從動錐齒輪的計算轉矩,,為和中的較小者取其值為6221;
由式(2.5)得:
=(13.0~16.0)=(239.09~294.27);
初選=260 則齒輪端面模數(shù)=/=260/35=7.43
==357.43=260.05
(3)主,從動齒輪齒面寬的選擇。
齒面過寬并不能增大齒輪的強度和壽命,反而會導致因錐齒輪輪齒小端齒溝變窄引起的切削刀頭頂面過窄及刀尖圓角過小,這樣不但會減小了齒根圓角半徑,加大了集中應力,還降低了刀具的使用壽命。此外,安裝時有位置偏差或由于制造、熱處理變形等原因使齒輪工作時載荷集中于輪齒小端會引起輪齒小端過早損壞和疲勞損傷。另外,齒面過寬也會引起裝配空間減小。但齒面過窄,輪齒表面的耐磨性和輪齒的強度會降低。
另外,由于雙曲面齒輪的幾何特性,雙曲面小齒輪齒面寬比大齒輪齒面寬要大。一般取大齒輪齒面寬=0.155=0.155260.05=38.09mm,小齒輪齒面寬=1.1=1.138.09=41.90mm
(4)小齒輪偏移距及偏移方向的選擇
載貨汽車主減速器的E值,不應超過從從動齒輪節(jié)錐距的20%(或取E值為d的10%~12%,且一般不超過12%)。傳動比愈大則E值也應愈大,大傳動比的雙曲面齒輪傳動,偏移距E可達從動齒輪節(jié)圓直徑的20%~30%。但當E大干的20%時,應檢查是否存在根切。
E=(0.10.12) =(0.10.12)260.05=26.0131.20mm
初選E=30mm
a b
c d
圖2.7 雙曲面齒輪的偏移方式
雙曲面齒輪的偏移可分為上偏移和下偏移兩種,如圖2.7所示:由從動齒輪的錐頂向其齒面看去并使主動齒輪處于右側,這時如果主動齒輪在從動齒輪中心線上方時,則為上偏移,在下方時則為下偏移。其中a、b是下偏移,c、d是上偏移。雙曲面齒輪的偏移方向與其輪齒的螺旋方向間有一定的關系:下偏移時主動齒輪的螺旋方向為左旋,從動齒輪為右旋;上偏移時主動齒輪為右旋,從動齒輪為左旋。本減速器采用下偏移。
(5)螺旋角的選擇
雙曲面齒輪螺旋角是沿節(jié)錐齒線變化的,輪齒大端的螺旋角最大,輪齒小端螺旋角最小,齒面寬中點處的螺旋角稱為齒輪中點螺旋角。螺旋錐齒輪中點處的螺旋角是相等的。二對于雙曲面齒輪傳動,由于主動齒輪相對于從動齒輪有了偏移距,使主動齒輪和從動齒輪中點處的螺旋角不相等。且主動齒輪的螺旋角大,從動齒輪的螺旋角小。
選時應考慮它對齒面重合度,輪齒強度和軸向力大小的影響,越大,則也越大,同時嚙合的齒越多,傳動越平穩(wěn),噪聲越低,而且輪齒的強度越高,應不小于1.25,在1.5~2.0時效果最好,但過大,會導致軸向力增大。
汽車主減速器雙曲面齒輪大小齒輪中點處的平均螺旋角多為35°~40°。
主動齒輪中點處的螺旋角可按下式初選:
=++ (2.6)
--主動輪中點處的螺旋角,mm;
,——主、從動輪齒數(shù);分別為8,35;
——雙曲面齒輪偏移距, 30mm;
——從動輪節(jié)圓直徑,260.05mm;
由式(2.6)得:
=++=45.84
從動齒輪中點螺旋角可按下式初選:
——雙曲面齒輪傳動偏移角的近似值;
——雙曲面從動齒輪齒面寬為38.09mm;
=-=45.84°-=34.23°
、從動齒輪和主動齒輪中點處的螺旋角。
平均螺旋角===40.04°。
(6)螺旋方向的選擇。
圖2.8 雙曲面齒輪的螺旋方向及軸向推力
主、從動錐齒輪的螺旋方向是相反的。如圖2.8所示,螺旋方向與雙曲面齒輪的旋轉方向影響其所受的軸向力的方向,當變速器掛前進擋時,應使主動錐齒輪的軸向力離開錐頂方向,這樣可使主、從動齒輪有分離的趨勢,防止輪齒因卡死而損壞。所以主動錐齒輪選擇為左旋,從錐頂看為逆時針運動,這樣從動錐齒輪為右旋,從錐頂看為順時針,驅動汽車前進。
(7)法向壓力角
加大壓力角可以提高齒輪的強度,減少齒輪不產生根切的最小齒數(shù),但對于尺寸小的齒輪,大壓力角易使齒頂變尖及刀尖寬度過小,并使齒輪的端面重疊系數(shù)下降,對于雙曲面齒輪,由于其主動齒輪輪齒兩側的法向壓力角不等,因此應按平均壓力角考慮,載貨汽車選用22°30′或20°的平均壓力角,在此選用20°的平均壓力角。
2.2.3主減速器雙曲面齒輪的幾何尺寸計算
(1)大齒輪齒頂角與齒根角
圖2.9(a)標準收縮齒和 (b)雙重收縮齒
標準收縮齒和雙重收縮齒各有其優(yōu)缺點,采用哪種收縮齒應按具體情況而定。雙重收縮齒的優(yōu)點在于能提高小齒輪粗切工序的效率。雙重收縮齒的輪齒參數(shù),其大、小齒輪根錐角的選定是考慮到用一把使用上最大的刀頂距的粗切刀,切出沿齒面寬方向正確的齒厚收縮來。當大齒輪直徑大于刀盤半徑時采用這種方法是最好的,不是這種情況而要采用雙重收縮齒,齒高的急劇收縮將使小端的齒輪又短又粗。標準收縮齒在齒高方向的收縮好,但可能使齒厚收縮過多,結果造成小齒輪粗切刀的刀頂距太小。這種情況可用傾錐根母線收縮齒的方法或仔細選用刀盤半徑加以改善,即當雙重收縮齒會使齒高方向收縮過多,而標準收縮齒會使齒厚收縮過多時,可采用傾錐根母線收縮齒作為兩者之間的這種。
大齒輪齒頂角和齒根角為了得到良好的收縮齒,應按下述計算選擇應采用采用雙重收縮齒還是傾錐根母線收縮齒。
①用標準收縮齒公式來計算及
(2.6)
(2.7)
(2.8)
(2.9)
(2.10)
(2.11)
(2.12)
(2.13)
(2.14)
由(2.6)與(2.14)聯(lián)立可得:
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)
式中: ,——小齒輪和大齒輪的齒數(shù);
——大齒輪的最大分度圓直徑,已算出為260.05mm;
——大齒輪在齒面寬中點處的分度圓半徑;
——在節(jié)錐平面內大齒輪齒面寬中點錐距mm;
——大齒輪齒面寬中點處的齒工作高;
——大齒輪齒頂高系數(shù)取0.15;
——大齒輪齒寬中點處的齒頂高;
——大齒輪齒寬中點處的齒跟高;
——大齒輪齒面寬中點處的螺旋角;
——大齒輪的節(jié)錐角;
——齒深系數(shù)取3.7;
——從動齒輪齒面寬。
所以:
43.820.73°
②計算標準收縮齒齒頂角與齒根角之和。
③ (2.20)
(2.21)
(2.22)
(2.23)由式(2.19)與(2.23)聯(lián)立可得:
(2.24)
——刀盤名義半徑,按表選取為114.30mm
——輪齒收縮系數(shù)
④當為正數(shù)時,為傾根錐母線收縮齒,應按傾根錐母線收縮齒重新計算及。
⑤按傾根錐母線收縮齒重新計算大齒輪齒頂角及齒跟角。 (2.25)
(2.26)
(2.27)
(2.28)
由式(2.25)與(2.25)聯(lián)立可得:
(2.29)
(2.30)
——大齒輪齒頂高系數(shù)取0.15
——傾根錐母線收縮齒齒根角齒頂角之和
(2)大齒輪齒頂高
(2.30)
(2.31)
——大齒輪節(jié)錐距.
由式(2.30),(2.31)得:
(3)大齒輪齒跟高.
(2.32)
——大齒輪齒寬中點處齒跟高
由式(2.32)得:
(4)徑向間隙
(5)大齒輪齒全高
(6)大齒輪齒工作高
(7)大齒輪的面錐角
(8)大齒輪的根錐角
(9)大齒輪外圓直徑
(10)小齒輪面錐角
(11)小齒輪的根錐角
(12)小齒輪的齒頂高和齒根高
齒頂高:
齒根高;
表2.2 主減速器雙曲面齒輪的幾何尺寸參數(shù)表[5]
序 號
項 目
符號
數(shù)值
1
主動齒輪齒數(shù)
8
2
從動齒輪齒數(shù)
35
3
端面模數(shù)
7.43 mm
4
主動齒輪齒面寬
41.90 mm
5
從動齒輪齒面寬
38.09 mm
6
主動齒輪節(jié)圓直徑
59.43 mm
7
從動齒輪節(jié)圓直徑
260.05mm
8
主動齒輪節(jié)錐角
12.88°
9
從動齒輪節(jié)錐角
77.12°
10
節(jié)錐距
133.31mm
11
偏移距
30mm
12
主動齒輪中點螺旋角
45.84°
13
從動齒輪中點螺旋角
34.23°
14
平均螺旋角
40.04°
15
刀盤名義半徑
114.30mm
16
從動齒輪齒頂角
1.12°
17
從動齒輪齒根角
6.34°
18
主動齒輪齒頂高
7.26mm
19
從動齒輪齒頂高
1.77 mm
20
主動齒輪齒根高
5.75mm
21
從動齒輪齒根高
11.84mm
22
螺旋角
35°
23
徑向間隙
1.51mm
24
從動齒輪的齒工作高
11.5mm
25
主動齒輪的面錐角
18.81°
26
從動齒輪的面錐角
78.24°
27
主動齒輪的根錐角
11.52°
28
從動齒輪的根錐角
70.78°
29
最小齒側間隙允許值
0.175mm
2.2.4主減速器雙曲面齒輪的強度計算
在完成主減速器齒輪的幾何計算之后,應對其強度進行計算,以保證其有足夠的強度和壽命以及安全可靠性地工作。在進行強度計算之前應首先了解齒輪的破壞形式及其影響因素。
1.齒輪的損壞形式及壽命
齒輪的損壞形式常見的有輪齒折斷、齒面點蝕及剝落、齒面膠合、齒面磨損等。它們的主要特點及影響因素分述如下:
(1)輪齒折斷
主要分為疲勞折斷及由于彎曲強度不足而引起的過載折斷。折斷多數(shù)從齒根開始,因為齒根處齒輪的彎曲應力最大。
①疲勞折斷:在長時間較大的交變載荷作用下,齒輪根部經受交變的彎曲應力。如果最高應力點的應力超過材料的耐久極限,則首先在齒根處產生初始的裂紋。隨著載荷循環(huán)次數(shù)的增加,裂紋不斷擴大,最后導致輪齒部分地或整個地斷掉。在開始出現(xiàn)裂紋處和突然斷掉前存在裂紋處,在載荷作用下由于裂紋斷面間的相互摩擦,形成了一個光亮的端面區(qū)域,這是疲勞折斷的特征,其余斷面由于是突然形成的故為粗糙的新斷面。
②過載折斷:由于設計不當或齒輪的材料及熱處理不符合要求,或由于偶然性的峰值載荷的沖擊,使載荷超過了齒輪彎曲強度所允許的范圍,而引起輪齒的一次性突然折斷。此外,由于裝配的齒側間隙調節(jié)不當、安裝剛度不足、安裝位置不對等原因,使輪齒表面接觸區(qū)位置偏向一端,輪齒受到局部集中載荷時,往往會使一端(經常是大端)沿斜向產生齒端折斷。各種形式的過載折斷的斷面均為粗糙的新斷面。
為了防止輪齒折斷,應使其具有足夠的彎曲強度,并選擇適當?shù)哪?shù)、壓力角、齒高及切向修正量、良好的齒輪材料及保證熱處理質量等。齒根圓角盡可能加大,根部及齒面要光潔。
(2)齒面的點蝕及剝落
齒面的疲勞點蝕及剝落是齒輪的主要破壞形式之一,約占損壞報廢齒輪的70%以上。它主要由于表面接觸強度不足而引起的。
①點蝕:是輪齒表面多次高壓接觸而引起的表面疲勞的結果。由于接觸區(qū)產生很大的表面接觸應力,常常在節(jié)點附近,特別在小齒輪節(jié)圓以下的齒根區(qū)域內開始,形成極小的齒面裂紋進而發(fā)展成淺凹坑,形成這種凹坑或麻點的現(xiàn)象就稱為點蝕。一般首先產生在幾個齒上。在齒輪繼續(xù)工作時,則擴大凹坑的尺寸及數(shù)目,甚至會逐漸使齒面成塊剝落,引起噪音和較大的動載荷。在最后階段輪齒迅速損壞或折斷。減小齒面壓力和提高潤滑效果是提高抗點蝕的有效方法,為此可增大節(jié)圓直徑及增大螺旋角,使齒面的曲率半徑增大,減小其接觸應力。在允許的范圍內適當加大齒面寬也是一種辦法。
②齒面剝落:發(fā)生在滲碳等表面淬硬的齒面上,形成沿齒面寬方向分布的較點蝕更深的凹坑。凹坑壁從齒表面陡直地陷下。造成齒面剝落的主要原因是表面層強度不夠。例如滲碳齒輪表面層太薄、心部硬度不夠等都會引起齒面剝落。當滲碳齒輪熱處理不當使?jié)B碳層中含碳濃度的梯度太陡時,則一部分滲碳層齒面形成的硬皮也將從齒輪心部剝落下來。
(3)齒面膠合
在高壓和高速滑摩引起的局部高溫的共同作用下,或潤滑冷卻不良、油膜破壞形成金屬齒表面的直接摩擦時,因高溫、高壓而將金屬粘結在一起后又撕下來所造成的表面損壞現(xiàn)象和擦傷現(xiàn)象稱為膠合。它多出現(xiàn)在齒頂附近,在與節(jié)錐齒線的垂直方向產生撕裂或擦傷痕跡。輪齒的膠合強度是按齒面接觸點的臨界溫度而定,減小膠合現(xiàn)象的方法是改善潤滑條件等。
(4)齒面磨損
這是輪齒齒面間相互滑動、研磨或劃痕所造成的損壞現(xiàn)象。規(guī)定范圍內的正常磨損是允許的。研磨磨損是由于齒輪傳動中的剝落顆粒、裝配中帶入的雜物,如未清除的型砂、氧化皮等以及油中不潔物所造成的不正常磨損,應予避免。汽車主減速器及差速器齒輪在新車跑合期及長期使用中按規(guī)定里程更換規(guī)定的潤滑油并進行清洗是防止不正常磨損的有效方法。
汽車驅動橋的齒輪,承受的是交變負荷,其主要損壞形式是疲勞。其表現(xiàn)是齒根疲勞折斷和由表面點蝕引起的剝落。在要求使用壽命為20萬千米或以上時,其循環(huán)次數(shù)均以超過材料的耐久疲勞次數(shù)。
2.實踐表明,主減速器齒輪的疲勞壽命主要與最大持續(xù)載荷(即平均計算轉矩)有關,而與汽車預期壽命期間出現(xiàn)的峰值載荷關系不大。汽車驅動橋的最大輸出轉矩Tec和最大附著轉矩Tcs并不是使用中的持續(xù)載荷,強度計算時只能用它來驗算最大應力,不能作為疲勞損壞的依據(jù)。
主減速器雙曲面齒輪的強度計算
(1) 單位齒長上的圓周力
在汽車主減速器齒輪的表面耐磨性,常常用其在輪齒上的假定單位壓力即單位齒長圓周力來估算,即
N/mm (2.33)
式中:P——作用在齒輪上的圓周力,按發(fā)動機最大轉矩Temax和最大附著力矩 兩種載荷工況進行計算,N;
——從動齒輪的齒面寬,在此取38.09mm.
按發(fā)動機最大轉矩計算時
N/mm (2.34)
式中: ——發(fā)動機輸出的最大轉矩,在此取300;
——變速器的傳動比在此取4.3;
——主動齒輪節(jié)圓直徑,在此取59.43mm;
按式(2.34)得: N/mm
在現(xiàn)代汽車的設計中,由于材質及加工工藝等制造質量的提高,單位齒長上的圓周力有時提高許用數(shù)據(jù)的20%~25%。經驗算以上數(shù)據(jù)在許用范圍內。
(2)輪齒的彎曲強度計算
汽車主減速器錐齒輪的齒根彎曲應力為
N/ (2.35)
式中:——該齒輪的計算轉矩,N·m,N·m;
——超載系數(shù);在此取1.0;
——尺寸系數(shù),反映材料的不均勻性,與齒輪尺寸和熱處理有關,
當m時,,在此=0.829
——載荷分配系數(shù),當兩個齒輪均用騎馬式支承型式時,=1.00~1.10式式支承時取1.10~1.25。支承剛度大時取最小值;
——質量系數(shù),對于汽車驅動橋齒輪,當齒輪接觸良好,周節(jié)及徑向跳動精度高時,可取1.0;
——計算齒輪的齒面寬38.09mm;
——計算齒輪的齒數(shù)8;
——端面模7.43mm;
——計算彎曲應力的綜合系數(shù)(或幾何系數(shù)),它綜合考慮了齒形系數(shù)、
載荷作用點的位置、載荷在齒間的分布、有效齒面寬、應力集中系數(shù)及慣性系數(shù)等對彎曲應力計算的影響。參照圖2.10取=0.28
圖2.10 計算用彎曲綜合系數(shù)
按N·m計算疲勞彎曲應力
=135 N/< 210 N/
按 N·m計算疲勞彎曲應力
=479 N/< 700 N/
所以主減速器齒輪滿足彎曲強度要求。
(3) 輪齒的表面接觸強度計算
錐齒輪的齒面接觸應力為
N/ (2.36)
式中:——主動齒輪的計算轉矩;
——材料的彈性系數(shù),對于鋼制齒輪副取232.6/mm;
,,——見式(2.35)下的說明;
——尺寸系數(shù),它考慮了齒輪的尺寸對其淬透性的影響,在缺乏經驗的情況下,可取1.0;
——表面質量系數(shù),決定于齒面最后加工的性質(如銑齒,磨齒等),即表面粗糙度及表面覆蓋層的性質(如鍍銅,磷化處理等)。一般情況下,對于制造精確的齒輪可取1.0;
——計算接觸應力的綜合系數(shù)(或稱幾何系數(shù))。它綜合考慮了嚙合齒面的相對曲率半徑、載荷作用的位置、輪齒間的載荷分配系數(shù)、有效尺寬及慣性系數(shù)的因素的影響,按圖2.11選取=0.17。
圖2.11 接觸計算用綜合系數(shù)
按計算:
=2027 〈2800N/
按計算:
=1109 〈1750N/
2.2.5主減速器齒輪的材料及熱處理
驅動橋錐齒輪的工作條件是相當惡劣的,與傳動系的其它齒輪相比,具有載荷大,作用時間長,載荷變化多,帶沖擊等特點。其損壞形式主要有齒輪根部彎曲折斷、齒面疲勞點蝕(剝落)、磨損和擦傷等。根據(jù)這些情況,對于驅動橋齒輪的材料及熱處理應有以下要求:
a.具有較高的疲勞彎曲強度和表面接觸疲勞強度,以及較好的齒面耐磨性,故齒表面應有高的硬度;
b.輪齒心部應有適當?shù)捻g性以適應沖擊載荷,避免在沖擊載荷下輪齒根部折斷
c.鋼材的鍛造、切削與熱處理等加工性能良好,熱處理變形小或變形規(guī)律易于控制,以提高產品的質量、縮短制造時間、減少生產成本并將低廢品率;
d.選擇齒輪材料的合金元素時要適合我國的情況。
汽車主減速器用的螺旋錐齒輪以及差速器用的直齒錐齒輪,目前都是用滲碳合金鋼制造。在此,齒輪所采用的鋼為20CrMnTi
用滲碳合金鋼制造的齒輪,經過滲碳、淬火、回火后,輪齒表面硬度應達到58~64HRC,而心部硬度較低,當端面模數(shù)〉8時為29~45HRC[11]。
由于新齒輪接觸和潤滑不良,為了防止在運行初期產生膠合、咬死或擦傷,防止早期的磨損,圓錐齒輪的傳動副(或僅僅大齒輪)在熱處理及經加工(如磨齒或配對研磨)后均予與厚度0.005~0.010~0.020mm的磷化處理或鍍銅、鍍錫。這種表面不應用于補償零件的公差尺寸,也不能代替潤滑[3]。
對齒面進行噴丸處理有可能提高壽命達25%。對于滑動速度高的齒輪,為了提高其耐磨性,可以進行滲硫處理。滲硫處理時溫度低,故不引起齒輪變形。滲硫后摩擦系數(shù)可以顯著降低,故即使?jié)櫥瑮l件較差,也會防止齒輪咬死、膠合和擦傷等現(xiàn)象產生[5]。
2.3主減速器軸承的選擇
2.3.1計算轉矩的確定
錐齒輪在工作過程中,相互嚙合的齒面上作用有一法向力。該法向力可分解為沿齒輪切向方向的圓周力、沿齒輪軸線方向的軸向力及垂直于齒輪軸線的徑向力。
為計算作用在齒輪的圓周力,首先需要確定計算轉矩。汽車在行駛過程中,由于變速器擋位的改變,且發(fā)動機也不全處于最大轉矩狀態(tài),故主減速器齒輪的工作轉矩處于經常變化中。實踐表明,軸承的主要損壞形式為疲勞損傷,所以應按輸入的當量轉矩進行計算。作用在主減速器主動錐齒輪上的當量轉矩可按下式計算:
(2.37)
式中:——發(fā)動機最大轉矩,在此取300N·m;
,…——變速器在各擋的使用率,可參考表表2.4選??;
,…——變速器各擋的傳動比;
,…——變速器在各擋時的發(fā)動機的利用率。
經計算為261N·m
主動齒輪齒寬中點處的分度圓直徑
mm
2.3.2齒寬中點處的圓周力
Z= N (2.38)
式中: ——作用在該齒輪上的轉矩,作用在主減速器主動錐齒輪上的當量轉矩。
d1m——該齒輪的齒面寬中點處的分度圓直徑。
按(2.38)計算主減速器主動錐齒輪齒寬中點處的圓周力
Z ==10.38KN
2.3.3雙曲面齒輪所受的軸向力和徑向力
圖2.12 主動錐齒輪齒面的受力圖
如圖3.1,主動錐齒輪螺旋方向為左旋,從錐頂看旋轉方向為逆時針,F(xiàn) 為作用在節(jié)錐面上的齒面寬中點A處的法向力,在A點處的螺旋方向的法平面內,F(xiàn)分解成兩個相互垂直的力F和,F(xiàn)垂直于OA且位于∠OO′A所在的平面,位于以OA為切線的節(jié)錐切平面內。在此平面內又可分為沿切線方向的圓周力F和沿節(jié)圓母線方向的力。F與之間的夾角為螺旋角,F(xiàn)與之間的夾角為法向壓力角,這樣就有:
(2.39)
(2.40) (2.41)
于是,作用在主動錐齒輪齒面上的軸向力A和徑向力R分別為
(2.42)
(2.43)
由式(2.42)可計算
10.80KN
由式(2.43)可計算
=2.06KN
2.3.4主減速器軸承載荷的計算及軸承的選擇
軸承的軸向載荷就是上述的齒輪的軸向力。但如果采用圓錐滾子軸承作支承時,還應考慮徑向力所應起的派生軸向力的影響。而軸承的徑向載荷則是上述齒輪的徑向力,圓周力及軸向力這三者所引起的軸承徑向支承反力的向量和。當主減速器的齒輪尺寸,支承形式和軸承位置已確定,則可計算出軸承的徑向載荷[7]。
對于采用懸臂式的主動錐齒輪和從動錐齒輪的軸承載荷,如圖2.13所示。
圖2.13 主減速器軸承的布置尺寸
(1)主動齒輪軸承的選擇
初選 a=65,b=40
軸承A,B的徑向載荷分別為
(2.44)
(2.45)
已知 =10.80KN,=2.06KN,a=65mm,b=40mm, 所以由式(2.44)和(2.45)得:
軸承A的徑向力
軸承B的徑向力
KN
軸承A,B的徑向載荷分別為
KN
對于軸承A,承受軸向載荷和徑向載荷所以采用圓錐滾子軸承,所承受的當量動載荷Q=XR+YA
Q——當量動載荷
X——徑向系數(shù)
Y——軸向系數(shù)
此時X=0.4,Y=1.9[6]
所以Q=16.83×0.4+10.8×1.9=27.25
根據(jù)公式: (2.46)
式中: ——為溫度系數(shù),在此取1.0;
——為載荷系數(shù),在此取1.2
ε——壽命指數(shù),取ε=
所以==2.703×10s
假設汽車行駛十萬公里大修,對于無輪邊減速器的驅動橋來說,主減速器的主動錐齒輪軸承的計算轉速為
(2.47)
式中: ——輪胎的滾動半徑為390mm
n——軸承計算轉速
——汽車的平均行駛速度,km/h;對于載貨汽車和公共汽車可取30~35 km/h,在此取35km/h。
所以有上式可得==238.72 r/min
所以軸承能工作的額定軸承壽命:
h (2.48)
式中: ——軸承的計算轉速,r/min。
由上式可得軸承A的使用壽命
代入公式(2.46)得
C=97.86KN
A軸承選 32307 GB/T 297-94[6]
對于軸承B,承受徑向載荷和徑向載荷所以采用圓錐滾子軸承,所承受的當量動載荷Q=XR+YA
Q——當量動載荷
壓縮包目錄 | 預覽區(qū) |
|
請點擊導航文件預覽
|
編號:63455820
類型:共享資源
大小:3.03MB
格式:ZIP
上傳時間:2022-03-18
40
積分
積分
- 關 鍵 詞:
- 含5張CAD圖紙 基于 AutoCAD 汽車 驅動 結構設計 CAD 圖紙
- 資源描述:
-
基于AutoCAD汽車驅動橋結構設計【含5張CAD圖紙】,含5張CAD圖紙,基于,AutoCAD,汽車,驅動,結構設計,CAD,圖紙展開閱讀全文
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://kudomayuko.com/article/63455820.html