《高考數(shù)學(xué)專題復(fù)習(xí)練習(xí)第7講 函數(shù)圖象》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)專題復(fù)習(xí)練習(xí)第7講 函數(shù)圖象(8頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
第7講 函數(shù)圖象
一、選擇題
1.函數(shù)y=|x|與y=在同一坐標(biāo)系上的圖像為( )
解析 因?yàn)閨x|≤,所以函數(shù)y=|x|的圖像在函數(shù)y=圖像的下方,排除C、D,當(dāng)x→+∞時(shí),→|x|,排除B,故選A.
答案 A
2.函數(shù)y=的圖象與函數(shù)y=2sin πx(-2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于( ).
A.2 B.4 C.6 D.8
解析 此題考查函數(shù)的圖象、兩個(gè)函數(shù)圖象的交點(diǎn)及函數(shù)的對稱性問題.兩個(gè)函數(shù)都是中心對稱圖形.
如上圖,兩個(gè)函數(shù)圖象都關(guān)于點(diǎn)(1,0)
2、成中心對稱,兩個(gè)圖象在[-2,4]上共8個(gè)公共點(diǎn),每兩個(gè)對應(yīng)交點(diǎn)橫坐標(biāo)之和為2,故所有交點(diǎn)的橫坐標(biāo)之和為8.
答案 D
3.已知函數(shù)f(x)=x-tan x,若實(shí)數(shù)x0是函數(shù)y=f(x)的零點(diǎn),且00,則f(t)>0,故選B.
答案 B
4.如圖,正方形ABCD的頂點(diǎn)A,B
3、,頂點(diǎn)C、D位于第一象限,直線l:x=t(0≤t≤)將正方形ABCD分成兩部分,記位于直線l左側(cè)陰影部分的面積為f(t),則函數(shù)S=f(t)的圖象大致是 ( ).
解析 當(dāng)直線l從原點(diǎn)平移到點(diǎn)B時(shí),面積增加得越來越快;當(dāng)直線l從點(diǎn)B平移到點(diǎn)C時(shí),面積增加得越來越慢.故選C.
答案 C
5.給出四個(gè)函數(shù),分別滿足①f(x+y)=f(x)+f(y),
②g(x+y)=g(x)·g(y),③h(x·y)=h(x)+h(y),
④m(x·y)=m(x)·m(y).又給出四個(gè)函數(shù)的圖象,那么正確的匹配方案可以是( )
A.①甲,②乙,③丙,④丁 B.
4、①乙,②丙,③甲,④丁
C.①丙,②甲,③乙,④丁 D.①丁,②甲,③乙,④丙
解析 圖象甲是一個(gè)指數(shù)函數(shù)的圖象,它應(yīng)滿足②;圖象乙是一個(gè)對數(shù)函數(shù)的圖象,它應(yīng)滿足③;圖象丁是y=x的圖象,滿足①.
答案 D
6.如右圖,已知正四棱錐S-ABCD所有棱長都為1,點(diǎn)E是側(cè)棱SC上一動(dòng)點(diǎn),過點(diǎn)E垂直于SC的截面將正四棱錐分成上、下兩部分.記SE=x(0
5、,SC⊥EI,∴EF=EI=SEtan 60°=x,SI=2SE=2x,IH=FG=BI=1-2x,F(xiàn)I=GH=AH=2 x,∴五邊形EFGHI的面積S=FG×GH+FI× =2x-3x2,
∴V(x)=VC-EFGHI+2VI-BHC=(2x-3x2)×CE+2×××1×(1-2x)×(1-2x)=x3-x2+,其圖象不可能是一條線段,故排除C,D.
(2)當(dāng)≤x<1時(shí), 過E點(diǎn)的截面為三角形,如圖2,設(shè)此三角形為△EFG,則EG=EF=ECtan 60°=(1-x),CG=CF=2CE=2(1-x),三棱錐E-FGC底面FGC上的高h(yuǎn)=ECsin 45°=(1-x),
∴V(x)=×
6、CG·CF·h=(1-x)3,
∴V′(x)=-(1-x)2,
又顯然V′(x)=-(1-x)2在區(qū)間上單調(diào)遞增,V′(x)<0,
∴函數(shù)V(x)=(1-x)3在區(qū)間上單調(diào)遞減,且遞減的速率越來越慢,故排除B,應(yīng)選A.
答案 A
二、填空題
7.函數(shù)y=的圖象與函數(shù)y=2sin πx(-2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于________.
解析 函數(shù)y==和y=2sin πx的圖象有公共的對稱中心(1,0),畫出二者圖象如圖所示,易知y=與y=2sin πx(-2≤x≤4)的圖象共有8個(gè)交點(diǎn),不妨設(shè)其橫坐標(biāo)為x1,x2,x3,x4,x5,x6,x7,x8,且x1
7、3
8、=-x+6和y=-2x2+4x+6的圖象如圖所示,可觀察出當(dāng)x=0時(shí)函數(shù)f(x)取得最大值6.
答案 6
10.已知函數(shù)f(x)=()x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1-|x|),則關(guān)于h(x)有下列命題:
①h(x)的圖象關(guān)于原點(diǎn)對稱;
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號(hào)為_________.(將你認(rèn)為正確的命題的序號(hào)都填上)
解析 g(x)= x,
∴h(x)= (1-|x|),
∴h(x)=
得函數(shù)h(x)的大致圖象如圖,故正確命題序號(hào)為②③.
9、
答案 ②③
三、解答題
11.討論方程|1-x|=kx的實(shí)數(shù)根的個(gè)數(shù).
解 設(shè)y=|1-x|,y=kx,則方程的實(shí)根的個(gè)數(shù)就是函數(shù)y=|1-x|的圖象與y=kx的圖象交點(diǎn)的個(gè)數(shù).
由右邊圖象可知:當(dāng)-1≤k<0時(shí),方程沒有實(shí)數(shù)根;
當(dāng)k=0或k<-1或k≥1時(shí),方程只有一個(gè)實(shí)數(shù)根;
當(dāng)0
10、
則P(x,y)關(guān)于點(diǎn)A(2,1)對稱的點(diǎn)為P′(4-x,2-y),
代入f(x)=x+,
可得2-y=4-x+,即y=x-2+,
∴g(x)=x-2+.
(2)由消去y
得x2-(m+6)x+4m+9=0,Δ=(m+6)2-4(4m+9),
∵直線y=m與C2只有一個(gè)交點(diǎn),
∴Δ=0,解得m=0或m=4.
當(dāng)m=0時(shí),經(jīng)檢驗(yàn)合理,交點(diǎn)為(3,0);
當(dāng)m=4時(shí),經(jīng)檢驗(yàn)合理,交點(diǎn)為(5,4).
13.當(dāng)x∈(1,2)時(shí),不等式(x-1)2
11、
(x-1)21時(shí),如圖,要使在(1,2)上,f1(x)=(x-1)2的圖象在f2(x)=logax的下方,
只需f1(2)≤f2(2),
即(2-1)2≤loga2,loga2≥1,
∴1<a≤2.
∴a的取值范圍是(1,2]
14.已知函數(shù)f(x)=x|m-x|(x∈R),且f(4)=0.
(1)求實(shí)數(shù)m的值;
(2)作出函數(shù)f(x)的圖象并判斷其零點(diǎn)個(gè)數(shù);
(3)根據(jù)圖象指出f(x)的單調(diào)遞減區(qū)間;
(4)根據(jù)圖象寫出不等式f(x)>0的解集;
(5)求集合M={m|使方程f(x)=m有三個(gè)不相等的實(shí)根}.
解 (1)∵f(4)=0,∴4|m-4|=0,即m=4.
(2)∵f(x)=x|m-x|=x|4-x|=
∴函數(shù)f(x)的圖象如圖:
由圖象知f(x)有兩個(gè)零點(diǎn).
(3)從圖象上觀察可知:f(x)的單調(diào)遞減區(qū)間為[2,4].
(4)從圖象上觀察可知:
不等式f(x)>0的解集為:{x|04}.
(5)由圖象可知若y=f(x)與y=m的圖象有三個(gè)不同的交點(diǎn),則0