歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

高考數(shù)學(xué)專題復(fù)習(xí)教案: 函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用備考策略

  • 資源ID:65063802       資源大?。?span id="7mebold" class="font-tahoma">85.50KB        全文頁數(shù):5頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

高考數(shù)學(xué)專題復(fù)習(xí)教案: 函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用備考策略

函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用備考策略 主標(biāo)題:函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用備考策略 副標(biāo)題:通過考點分析高考命題方向,把握高考規(guī)律,為學(xué)生備考復(fù)習(xí)打通快速通道。 關(guān)鍵詞:y=Asin(ωx+φ),圖象與性質(zhì),備考策略 難度:2 重要程度:4 內(nèi)容考點一 函數(shù)y=Asin(ωx+φ)的圖象畫法與變換 【例1】 (1)已知f(x)=sin(ω>0)的圖象與y=-1的圖象的相鄰兩交點間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos 2x的圖象 (  ). A.向左平移個單位 B.向右平移個單位 C.向左平移個單位 D.向右平移個單位 (2)已知函數(shù)y=2sin. ①求它的振幅、周期、初相; ②用“五點法”作出它在一個周期內(nèi)的圖象; ③說明y=2sin的圖象可由y=sin x的圖象經(jīng)過怎樣的變換而得到. (1)解析 依題意T=π,∴T=π=,∴ω=2,∴f(x)=sin(2x+),∴只需y=cos 2x=sin(2x+)=sin2(x+) f(x)=sin(2x+). 答案 B (2)解?、賧=2sin的振幅A=2,周期T==π,初相φ=. ②令X=2x+,則y=2sin=2sin X. 列表,并描點畫出圖象: x - X 0 π 2π y=sin X 0 1 0 -1 0 y=2sin 0 2 0 -2 0 ③法一 把y=sin x的圖象上所有的點向左平移個單位,得到y(tǒng)=sin的圖象;再把y=sin的圖象上的點的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到y(tǒng)=sin的圖象;最后把y=sin的圖象上所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),即可得到y(tǒng)=2sin的圖象. 法二 將y=sin x的圖象上所有點的橫坐標(biāo)x縮短到原來的倍(縱坐標(biāo)不變),得到y(tǒng)=sin 2x的圖象;再將y=sin 2x的圖象向左平移個單位,得到y(tǒng)=sin 2=sin的圖象;再將y=sin的圖象上所有點的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),得到y(tǒng)=2sin的圖象. 【備考策略】 函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的圖象的兩種作法是五點作圖法和圖象變換法. (1)五點法:用“五點法”作y=Asin(ωx+φ)的簡圖,主要是通過變量代換,設(shè)z=ωx+φ,由z取0,,π,π,2π來求出相應(yīng)的x,通過列表,計算得出五點坐標(biāo),描點后得出圖象. (2)三角函數(shù)圖象進行平移變換時注意提取x的系數(shù),進行周期變換時,需要將x的系數(shù)變?yōu)樵瓉淼摩乇?,要特別注意相位變換、周期變換的順序,順序不同,其變換量也不同. 考點二 由圖象求函數(shù)y=Asin(ωx+φ)的解析式 【例2】 函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象 如圖所示,則函數(shù)f(x)的解析式為________. 解析 由圖可知A=, 法一?。剑剑訲=π,故ω=2,因此f(x)=sin(2x+φ), 又對應(yīng)五點法作圖中的第三個點,因此2×+φ=π,所以φ=,故f(x)=sin. 法二 以為第二個“零點”,為最小值點, 列方程組解得 故f(x)=sin. 答案 f(x)=sin 【備考策略】 已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象求其解析式時,A比較容易看圖得出,困難的是求待定系數(shù)ω和φ,常用如下兩種方法: (1)由ω=即可求出ω;確定φ時,若能求出離原點最近的右側(cè)圖象上升(或下降)的“零點”橫坐標(biāo)x0,則令ωx0+φ=0(或ωx0+φ=π),即可求出φ. (2)代入點的坐標(biāo),利用一些已知點(最高點、最低點或“零點”)坐標(biāo)代入解析式,再結(jié)合圖形解出ω和φ,若對A,ω的符號或?qū)Ζ盏姆秶幸螅瑒t可用誘導(dǎo)公式變換使其符合要求. 考點三 函數(shù)y=Asin(ωx+φ)的性質(zhì)應(yīng)用 【例3】 已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω,A>0,0<φ<)的最大值為2,最小正周期為π,直線x=是其圖象的一條對稱軸. (1)求函數(shù)f(x)的解析式; (2)求函數(shù)g(x)=f-f的單調(diào)遞增區(qū)間. 解 (1)由題意,得A=2,ω==2, 當(dāng)x=時,2sin=±2, 即sin=±1,所以+φ=kπ+, 解得φ=kπ+,又0<φ<,所以φ=. 故f(x)=2sin. (2)g(x)=2sin-2sin =2sin 2x-2sin =2sin 2x-2 =sin 2x-cos 2x=2sin. 由2kπ-≤2x-≤2kπ+,k∈Z, 得kπ-≤x≤kπ+,k∈Z. 所以函數(shù)g(x)的單調(diào)遞增區(qū)間是,k∈Z. 【備考策略】 函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的性質(zhì) (1)奇偶性:φ=kπ時,函數(shù)y=Asin(ωx+φ)為奇函數(shù);φ=kπ+(k∈Z)時,函數(shù)y=Asin(ωx+φ)為偶函數(shù). (2)周期性:y=Asin(ωx+φ)存在周期性,其最小正周期為T=. (3)單調(diào)性:根據(jù)y=sin t和t=ωx+φ(ω>0)的單調(diào)性來研究,由-+2kπ≤ωx+φ≤+2kπ(k∈Z)得單調(diào)增區(qū)間;由+2kπ≤ωx+φ≤+2kπ(k∈Z)得單調(diào)減區(qū)間. (4)對稱性:利用y=sin x的對稱中心為(kπ,0)(k∈Z)求解,令ωx+φ=kπ(k∈Z),求得x、ω. 利用y=sin x的對稱軸為x=kπ+(k∈Z)求解,令ωx+φ=kπ+(k∈Z)得其對稱軸.

注意事項

本文(高考數(shù)學(xué)專題復(fù)習(xí)教案: 函數(shù)y=Asin(ωx+φ)的圖象及應(yīng)用備考策略)為本站會員(努力****83)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!