高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 2 用數(shù)學(xué)歸納法證明不等式課件 新人教A版選修4-5.ppt
《高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 2 用數(shù)學(xué)歸納法證明不等式課件 新人教A版選修4-5.ppt》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 2 用數(shù)學(xué)歸納法證明不等式課件 新人教A版選修4-5.ppt(42頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
二用數(shù)學(xué)歸納法證明不等式 1 會用數(shù)學(xué)歸納法證明簡單的不等式 2 會用數(shù)學(xué)歸納法證明貝努利不等式 3 了解貝努利不等式的應(yīng)用條件 1 應(yīng)用數(shù)學(xué)歸納法證明不等式 重點(diǎn) 2 貝努利不等式的應(yīng)用 難點(diǎn) 目標(biāo)定位 預(yù)習(xí)學(xué)案 不成立 1 數(shù)學(xué)歸納法的步驟 1 歸納奠基 證明當(dāng)n取第一個值 時命題成立 2 歸納遞推 假設(shè) k n0 k N 時命題成立 證明當(dāng)n 時命題也成立 只要完成這兩個步驟 就可以斷定命題對從n0開始的所有正整數(shù)n都成立 2 對任何實(shí)數(shù)x 1和任何正整數(shù)n 有 稱為貝努利不等式 n0 n k k 1 1 x n 1 nx 1 用數(shù)學(xué)歸納法證明3n n3 n 3 n N 第一步應(yīng)驗(yàn)證 A n 1B n 2C n 3D n 4解析 由題意知n 3 應(yīng)驗(yàn)證n 3 故選C 答案 C 2 對于正整數(shù)n 下列說法不正確的是 A 3n 1 2nB 0 9n 1 0 1nC 0 9n 1 0 1nD 0 1n 1 0 9n解析 由貝努利不等式 1 x n 1 nx n N x 1 當(dāng)x 2時 1 2 n 1 2n 故A正確 當(dāng)x 0 1時 1 0 1 n 0 0 1n B正確 C不正確 答案 C 課堂學(xué)案 數(shù)學(xué)歸納法證明不等式 數(shù)學(xué)歸納法在數(shù)列中的應(yīng)用 思路點(diǎn)撥 利用數(shù)學(xué)歸納法解決探索型不等式的思路是 觀察 歸納 猜想 證明 即先通過觀察部分項(xiàng)的特點(diǎn) 進(jìn)行歸納 判斷并猜想出一般結(jié)論 然后用數(shù)學(xué)歸納法進(jìn)行證明 探索型問題 1 用數(shù)學(xué)歸納法證明一個與正整數(shù)有關(guān)的不等式的步驟 證明 當(dāng)n取和第一個值n0結(jié)論成立 假設(shè)當(dāng)n k k N 且k n0 時結(jié)論成立 證明當(dāng)n k 1時結(jié)論也成立 由 可知 對于命題從n0開始的所有正整數(shù)n都成立 數(shù)學(xué)歸納法證明不等式 2 用數(shù)學(xué)歸納法證明不等式的重點(diǎn)用數(shù)學(xué)歸納法證明不等式的重點(diǎn)在第二步 同時也是難點(diǎn)之所在 即假設(shè)f k g k 成立 證明f k 1 g k 1 成立 對這個條件不等式的證明 除了靈活運(yùn)用作差比較法 作商比較法 綜合法 分析法等常用的不等式證明方法外 放縮法作為證明不等式的特有技巧 在用數(shù)學(xué)歸納法證明不等式時經(jīng)常使用 貝努利不等式 這種方法解決的問題主要是歸納型問題或探索性問題 結(jié)論如何 命題的成立不成立都預(yù)先需要?dú)w納與探索 而歸納與探索多數(shù)情況下是從特例 特殊情況入手 得到一個結(jié)論 但這個結(jié)論不一定正確 因?yàn)檫@是靠不完全歸納法得出的 因此 需要給出一定的邏輯證明 所以 通過觀察 分析 歸納 猜想 探索一般規(guī)律 其關(guān)鍵在于正確的歸納猜想 如果歸納不出正確的結(jié)論 那么數(shù)學(xué)歸納法的證明也就無法進(jìn)行了 觀察 歸納 猜想 證明的方法- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 用數(shù)學(xué)歸納法證明不等式課件 新人教A版選修4-5 第四 數(shù)學(xué) 歸納法 證明 不等式 課件 新人 選修
鏈接地址:http://kudomayuko.com/p-7196526.html