《【2022高考必備】2012-2021十年全國高考數學真題分類匯編 向量(精解精析)》由會員分享,可在線閱讀,更多相關《【2022高考必備】2012-2021十年全國高考數學真題分類匯編 向量(精解精析)(13頁珍藏版)》請在裝配圖網上搜索。
1、
2012-2021十年全國高考數學真題分類匯編 向量(精解精析)
一、選擇題
1.(2020年高考數學課標Ⅲ卷理科)已知向量a,b滿足,,,則 ( )
A. B. C. D.
【答案】D
解析:,,,.
,
因此,.
故選:D.
【點睛】本題考查平面向量夾角余弦值的計算,同時也考查了平面向量數量積的計算以及向量模的計算,考查計算能力,屬于中等題.
2.(2019年高考數學課標全國Ⅱ卷理科)已知,,,則 ( )
A. B. C. D.
【答案】C
【解析】∵,,∴,∴,解得,
即,則.
【點評】本題考查平面向量數量積的坐標運算,滲透了直觀想象和數學運算素
2、養(yǎng).采取公式法,利用轉化與化歸思想解題.本題考點為平面向量的數量積,側重基礎知識和基本技能,難度不大.學生易在處理向量的法則運算和坐標運算處出錯,借助向量的模的公式得到向量的坐標,然后計算向量數量積.
3.(2019年高考數學課標全國Ⅰ卷理科)已知非零向量,滿足,且,則與的夾角為 ( )
A.
B.
C.
D.
【答案】B
解析:,所以,
所以.
4.(2019年高考數學課標全國Ⅰ卷理科)古希臘時期,人們認為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比為
(,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美
人體的頭頂至咽喉的長度與咽喉至肚臍的長度之
3、比也是.若某人滿足上述兩個黃金
分割比例,且腿長為105cm,頭頂至脖子下端的長度為26cm,則其身高可能是 ( )
A.165cm
B.175cm
C.185cm
D.190cm
【答案】B
解析:如圖,,
,則,,,
所以身高,
又,所以,身高,
故,故選B.
5.(2018年高考數學課標Ⅱ卷(理))已知向量,滿足,,則 ( )
A.4 B.3 C.2 D.0
【答案】B
解析:,故選B.
6.(2018年高考數學課標卷Ⅰ(理))在中,為邊上的中線,為的中點,則 ( )
A. B. C. D.
【答案】A
解析:在中,為邊上的中線,為的中點,
4、,故選A.
7.(2017年高考數學課標Ⅲ卷理科)在矩形中,,,動點在以點為圓心且與相切的圓上,若,則的最大值為 ( )
A. B. C. D.
【答案】A
【解析】法一:以為坐標原點,所在直線為軸,所在直線為軸建立平面直角坐標系,如下圖
則,,,,連結,過點作于點
在中,有
即
所以圓的方程為
可設
由可得
所以,所以
其中,
所以的最大值為,故選A.
法二:通過點作于點,由,,可求得
又由,可求得
由等和線定理可知,當點的切線(即)與平行時,取得最大值
又點到的距離與點到直線的距離相等,均為
而此時點到直線的距離為
所以,所以的最大值為,故選
5、A.
另一種表達:如圖,由“等和線”相關知識知,當點在如圖所示位置時,最大,且此時若,則有,由三角形全等可得,知,所以選A.
法三:如圖,建立平面直角坐標系
設
根據等面積公式可得圓的半徑是,即圓的方程是
,若滿足
即 , ,所以,設 ,即,點在圓上,所以圓心到直線的距離,即 ,解得,所以的最大值是,即的最大值是,故選A.
法四:由題意,畫出右圖.
設與切于點,連接.以為原點,為軸正半軸,為軸正半軸建立直角坐標系
則點坐標為.∵,.∴.切于點.
∴⊥.∴是中斜邊上的高.
即的半徑為.∵在上.∴點的軌跡方程為.
設點坐標,可以設出點坐標滿足的參數方程如下:
6、
而,,.
∵
∴,.
兩式相加得:
(其中,)
當且僅當,時,取得最大值3.
【考點】平面向量的坐標運算;平面向量基本定理
【點評】(1)應用平面向量基本定理表示向量是利用平行四邊形法則或三角形法則進行向量的加、減或數乘運算.
(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.
8.(2017年高考數學課標Ⅱ卷理科)已知是邊長為2的等邊三角形,為平面內一點,則的最小值是 ( )
A. B. C. D.
【答案】B
【命題意圖】本題主要考查等邊三角形的性質及平面向量的線性運算﹑數量積,意
7、在考查考生
轉化與化歸思想和運算求解能力
【解析】解法一:建系法
連接,,,.
,∴
∴
∴,∴
∴最小值為
解法二:均值法
∵,∴
由上圖可知:;兩邊平方可得
∵ ,∴
∴ ,∴最小值為
解法三:配湊法
∵
∴
∴最小值為
【知識拓展】三角形與向量結合的題屬于高考經典題,一般在壓軸題出現,解決此類問題的通
法就是建系法,比較直接,易想,但有時計算量偏大.
【考點】 平面向量的坐標運算,函數的最值
【點評】平面向量中有關最值問題的求解通常有兩種思路:一是“形化”,即利用平面向量的幾何意義將問題轉化為平面幾何中的最值或范圍問題,然后根據平面圖形
8、的特征直接進行判斷;二是“數化”,即利用平面向量的坐標運算,把問題轉化為代數中的函數最值與值域、不等式我解集,方程有解等問題,然后利用函數、不等式、方程的有關知識來解決.
9.(2016高考數學課標Ⅲ卷理科)已知向量,,則 ( )
A. B. C. D.
【答案】A
【解析】由題意,得,所以,故選A.
10.(2016高考數學課標Ⅱ卷理科)已知向量,且,則 ( )
A. B. C. D.
【答案】D
【解析】由可得:,所以,又
所以,所以,故選D.
11.(2015高考數學新課標1理科)設D為ABC所在平面內一點,則 ( )
A. B.
C. D.
【答案】A
9、
解析:由題知=,故選A.
考點:平面向量的線性運算
12.(2014高考數學課標2理科)設向量a,b滿足|a+b|=,|a-b|=,則ab= ( )
A.1 B.2 C.3 D.5
【答案】A
解析:因為
兩式相加得:所以,故選A.
考點:(1)平面向量的模;(2)平面向量的數量積
難度:B
備注:常考題
二、填空題
13.(2021年高考全國甲卷理科)已知向量.若,則________.
【答案】.
解析:,
,解得,
故答案為:.
【點睛】本題考查平面向量的坐標運算,平面向量垂直的條件,屬基礎題,利用平面向量垂直的充分必要條件是其數量積.
14.(202
10、1年高考全國乙卷理科)已知向量,若,則__________.
【答案】
解析:因為,所以由可得,
,解得.
故答案為:.
【點睛】本題解題關鍵是熟記平面向量數量積的坐標表示,設,
,注意與平面向量平行的坐標表示區(qū)分.
15.(2020年高考數學課標Ⅰ卷理科)設為單位向量,且,則______________.
【答案】
【解析】因為為單位向量,所以
所以
解得:
所以
故答案為:
【點睛】本題主要考查了向量模的計算公式及轉化能力,屬于中檔題.
16.(2020年高考數學課標Ⅱ卷理科)已知單位向量,的夾角為45°,與垂直,則k=__________.
【答案】
解
11、析:由題意可得:,
由向量垂直的充分必要條件可得:,
即:,解得:.
故答案為:.
【點睛】本題主要考查平面向量的數量積定義與運算法則,向量垂直的充分必要條件等知識,意在考查學生的轉化能力和計算求解能力.
17.(2019年高考數學課標Ⅲ卷理科)已知,為單位向量,且,若,則___________.
【答案】.
【解析】因為,,所以,
,所以,所以.
【點評】本題主要考查平面向量的數量積、向量的夾角.滲透了數學運算、直觀想象素養(yǎng).使用轉化思想得出答案.
18.(2018年高考數學課標Ⅲ卷(理))已知向量,,,若,則 .
【答案】
解析:依題意可得,又,
12、所以,解得.
19.(2017年高考數學新課標Ⅰ卷理科)已知向量,的夾角為,,,則__________.
【答案】
【解析】法一:
所以.
法二(秒殺解法):利用如下圖形,可以判斷出的模長是以為邊長的菱形對角線的長度,則為.
法三:坐標法
依題意,可設,,所以
所以.
【考點】平面向量的運算
【點評】平面向量中涉及到有關模長的問題,用到的通法是將模長進行平方,利用向量數量積的知識進行解答,很快就能得出答案;另外,向量是一個工具型的知識,具備代數和幾何特征,在做這類問題時可以使用數形結合的思想,會加快解題速度.
20.(2016高考數學課標Ⅰ卷
13、理科)設向量,,且,則 .
【答案】
【解析】由已知得:
∴,解得.
21.(2015高考數學新課標2理科)設向量,不平行,向量與平行,則實數_________.
【答案】
解析:因為向量與平行,所以,則所以.
考點:向量共線.
22.(2014高考數學課標1理科)已知A,B,C是圓O上的三點,若,則與的夾角為______.
【答案】
解析:∵,∴O為線段BC中點,故BC為的直徑,
∴,∴與的夾角為.
考點:(1)平面向量在幾何中的應用(2)向量的夾角(3)化歸與轉化思想
難度:B
備注:高頻考點
23.(2013高考數學新課標2理科)已知正方形的邊長為2,為的中點,則=________.
【答案】2
解析:由題意知:
考點:(1)5.1.2向量的線性運算;(2)5.3.1平面向量的數量積運算
難度: A
備注:高頻考點
24.(2013高考數學新課標1理科)已知兩個單位向量的夾角為60°,,若,則t =_____.
【答案】 2
解析:=====0,解得=.
考點: (1)5.3.1平面向量的數量積運算.
難度:A
備注:高頻考點