《高考人教版數(shù)學(xué)理總復(fù)習(xí)練習(xí):第七章 立體幾何 課時(shí)作業(yè)45 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考人教版數(shù)學(xué)理總復(fù)習(xí)練習(xí):第七章 立體幾何 課時(shí)作業(yè)45 Word版含解析(15頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
課時(shí)作業(yè)45 直線、平面垂直的判定及其性質(zhì)
1.(2019·廣東廣州模擬)設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的是( B )
A.若α⊥β,m?α,n?β,則m⊥n
B.若m⊥α,m∥n,n∥β,則α⊥β
C.若m⊥n,m?α,n?β,則α⊥β
D.若α∥β,m?α,n?β,則m∥n
解析:若α⊥β,m?α,n?β,則m與n相交、平行或異面,故A錯(cuò)誤;∵m⊥α,m∥n,∴n⊥α,又∵n∥β,∴α⊥β,故B正確;若m⊥n,m?α,n?β,則α與β的位置關(guān)系不確定,故C錯(cuò)誤;若α∥β,m?α,n?β,則m∥n或m,n異面,故D錯(cuò)誤,故選B.
2.(
2、2019·河南安陽(yáng)一模)已知a,b表示兩條不同的直線,α,β表示兩個(gè)不同的平面,下列說(shuō)法錯(cuò)誤的是( C )
A.若a⊥α,b⊥β,α∥β,則a∥b
B.若a⊥α,b⊥β,a⊥b,則α⊥β
C.若a⊥α,a⊥b,α∥β,則b∥β
D.若α∩β=a,a∥b,則b∥α或b∥β
解析:對(duì)于A,若a⊥α,α∥β,則α⊥β,
又b⊥β,故a∥b,故A正確;
對(duì)于B,若a⊥α,a⊥b,則b?α或b∥α,
∴存在直線m?α,使得m∥b,
又b⊥β,∴m⊥β,∴α⊥β.故B正確;
對(duì)于C,若a⊥α,a⊥b,則b?α或b∥α,
又α∥β,∴b?β或b∥β,故C錯(cuò)誤;
對(duì)于D,若α∩β=a,
3、a∥b,則b∥α或b∥β,故D正確,故選C.
3.若平面α⊥平面β,平面α∩平面β=直線l,則( D )
A.垂直于平面β的平面一定平行于平面α
B.垂直于直線l的直線一定垂直于平面α
C.垂直于平面β的平面一定平行于直線l
D.垂直于直線l的平面一定與平面α,β都垂直
解析:對(duì)于A,垂直于平面β的平面與平面α平行或相交,故A錯(cuò)誤;對(duì)于B,垂直于直線l的直線與平面α垂直、斜交、平行或在平面α內(nèi),故B錯(cuò)誤;對(duì)于C,垂直于平面β的平面與直線l平行或相交,故C錯(cuò)誤.D正確.
4.(2019·福建泉州一模)在下列四個(gè)正方體ABCD-A1B1C1D1中,E,F(xiàn),G均為所在棱的中點(diǎn),過(guò)E,F(xiàn)
4、,G作正方體的截面,則在各個(gè)正方體中,直線BD1與平面EFG不垂直的是( D )
解析:如圖,在正方體中,E,F(xiàn),G,M,N,Q均為所在棱的中點(diǎn),易知E,F(xiàn),G,M,N,Q六個(gè)點(diǎn)共面,直線BD1與平面EFMNQG垂直,并且選項(xiàng)A、B、C中的平面與這個(gè)平面重合,不滿(mǎn)足題意,只有選項(xiàng)D中的直線BD1與平面EFG不垂直,滿(mǎn)足題意,故選D.
5.如圖,直三棱柱ABC-A1B1C1中,側(cè)棱長(zhǎng)為2,AC=BC=1,∠ACB=90°,D是A1B1的中點(diǎn),F(xiàn)是BB1上的動(dòng)點(diǎn),AB1,DF交于點(diǎn)E.要使AB1⊥平面C1DF,則線段B1F的長(zhǎng)為( A )
A. B.1
C. D.2
5、
解析:設(shè)B1F=x,因?yàn)锳B1⊥平面C1DF,DF?平面C1DF,
所以AB1⊥DF.
由已知可得A1B1=,
設(shè)Rt△AA1B1斜邊AB1上的高為h,
則DE=h.
又2×=h,所以h=,DE=.
在Rt△DB1E中,B1E= =.
由面積相等得× =x,得x=.
6.(2019·唐山一模)如圖,在正方形ABCD中,E,F(xiàn)分別是BC,CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE,AF及EF把這個(gè)正方形折成一個(gè)空間圖形,使B,C,D三點(diǎn)重合,重合后的點(diǎn)記為H,那么在這個(gè)空間圖形中必有( B )
A.AG⊥平面EFH B.AH⊥平面EFH
C.HF⊥平面AEF D.
6、HG⊥平面AEF
解析:根據(jù)折疊前、后AH⊥HE,AH⊥HF不變,
又HE∩HF=H,
∴AH⊥平面EFH,B正確.
∵過(guò)A只有一條直線與平面EFH垂直,
∴A不正確.
∵AG⊥EF,EF⊥GH,AG∩GH=G,
∴EF⊥平面HAG,
又EF?平面AEF,∴平面HAG⊥平面AEF,過(guò)H作直線垂直于平面AEF,一定在平面HAG內(nèi),∴C不正確.
由條件證不出HG⊥平面AEF,∴D不正確.
7.如圖所示,直線PA垂直于⊙O所成的平面,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,點(diǎn)M為線段PB的中點(diǎn).現(xiàn)有結(jié)論:①BC⊥PC;②OM∥平面APC;③點(diǎn)B到平面PAC的距離等于線段BC的長(zhǎng).
7、其中正確的是( B )
A.①② B.①②③
C.① D.②③
解析:對(duì)于①,∵PA⊥平面ABC,∴PA⊥BC,
∵AB為⊙O的直徑,∴BC⊥AC,
∵AC∩PA=A,∴BC⊥平面PAC,
又PC?平面PAC,∴BC⊥PC;
對(duì)于②,∵點(diǎn)M為線段PB的中點(diǎn),
∴OM∥PA,
∵PA?平面PAC,OM?平面PAC,
∴OM∥平面PAC;
對(duì)于③,由①知BC⊥平面PAC,∴線段BC的長(zhǎng)即是點(diǎn)B到平面PAC的距離,故①②③都正確.
8.(2019·廣州模擬)如圖是一個(gè)幾何體的平面展開(kāi)圖,其中四邊形ABCD為正方形,E,F(xiàn)分別為PA,PD的中點(diǎn),在此幾何體中,給出下
8、面四個(gè)結(jié)論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確結(jié)論的個(gè)數(shù)是( B )
A.1 B.2
C.3 D.4
解析:畫(huà)出該幾何體,如圖所示,
①因?yàn)镋,F(xiàn)分別是PA,PD的中點(diǎn),
所以EF∥AD,所以EF∥BC,
直線BE與直線CF是共面直線,故①不正確;
②直線BE與直線AF滿(mǎn)足異面直線的定義,故②正確;
③由E,F(xiàn)分別是PA,PD的中點(diǎn),可知EF∥AD,所以EF∥BC,
因?yàn)镋F?平面PBC,BC?平面PBC,
所以直線EF∥平面PBC,故③正確;
④因?yàn)锽E與PA
9、的關(guān)系不能確定,
所以不能判定平面BCE⊥平面PAD,故④不正確.
所以正確結(jié)論的個(gè)數(shù)是2.
9.(2019·洛陽(yáng)模擬)如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M滿(mǎn)足 DM⊥PC(或BM⊥PC) 時(shí),平面MBD⊥平面PCD.(只要填寫(xiě)一個(gè)你認(rèn)為正確的條件即可)
解析:∵PA⊥底面ABCD,∴BD⊥PA,
連接AC,則BD⊥AC,且PA∩AC=A,
∴BD⊥平面PAC,∴BD⊥PC.
∴當(dāng)DM⊥PC(或BM⊥PC)時(shí),即有PC⊥平面MBD,
而PC?平面PCD,∴平面MBD⊥平面PCD.
10.(2019·蘭州實(shí)戰(zhàn)考試
10、)α,β是兩平面,AB,CD是兩條線段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一個(gè)條件,就能得出BD⊥EF.現(xiàn)有下列條件:①AC⊥β;②AC與α,β所成的角相等;③AC與CD在β內(nèi)的射影在同一條直線上;④AC∥EF.
其中能成為增加條件的序號(hào)是?、佗邸?
解析:由題意得,AB∥CD,∴A,B,C,D四點(diǎn)共面.
①中,∵AC⊥β,EF?β,∴AC⊥EF,
又∵AB⊥α,EF?α,∴AB⊥EF,
∵AB∩AC=A,∴EF⊥平面ABCD,
又∵BD?平面ABCD,∴BD⊥EF,故①正確;
②不能得到BD⊥EF,故②錯(cuò)誤;
③中,由AC與CD在β內(nèi)的射影在同一條直線上可知
11、平面ABCD⊥β,
又AB⊥α,AB?平面ABCD,∴平面ABCD⊥α.
∵平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,
∴EF⊥平面ABCD,又BD?平面ABCD,
∴BD⊥EF,故③正確;
④中,由①知,若BD⊥EF,則EF⊥平面ABCD,
則EF⊥AC,故④錯(cuò)誤,故填①③.
11.(2018·全國(guó)卷Ⅲ)如圖,矩形ABCD所在平面與半圓弧所在平面垂直,M是上異于C,D的點(diǎn).
(1)證明:平面AMD⊥平面BMC;
(2)在線段AM上是否存在點(diǎn)P,使得MC∥平面PBD?說(shuō)明理由.
解:(1)證明:由題設(shè)知,平面CMD⊥平面ABCD,交線為CD.
因?yàn)锽C⊥CD,
12、BC?平面ABCD,
所以BC⊥平面CMD,故BC⊥DM.
因?yàn)镸為上異于C,D的點(diǎn),且DC為直徑,
所以DM⊥CM.
又BC∩CM=C,所以DM⊥平面BMC.
而DM?平面AMD,故平面AMD⊥平面BMC.
(2)當(dāng)P為AM的中點(diǎn)時(shí),MC∥平面PBD.
證明如下:連接AC交BD于O,如圖.因?yàn)锳BCD為矩形,所以O(shè)為AC中點(diǎn).
連接OP,因?yàn)镻為AM中點(diǎn),所以MC∥OP.
MC?平面PBD,OP?平面PBD,
所以MC∥平面PBD.
12.(2018·北京卷)如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F(xiàn)分
13、別為AD,PB的中點(diǎn).
(1)求證:PE⊥BC;
(2)求證:平面PAB⊥平面PCD;
(3)求證:EF∥平面PCD.
證明:(1)因?yàn)镻A=PD,E為AD的中點(diǎn),
所以PE⊥AD.
因?yàn)榈酌鍭BCD為矩形,
所以BC∥AD,所以PE⊥BC.
(2)因?yàn)榈酌鍭BCD為矩形,所以AB⊥AD.
又因?yàn)槠矫鍼AD⊥平面ABCD,
所以AB⊥平面PAD,所以AB⊥PD.
又因?yàn)镻A⊥PD,所以PD⊥平面PAB.
所以平面PAB⊥平面PCD.
(3)如圖,取PC的中點(diǎn)G,連接FG,DG.
因?yàn)镕,G分別為PB,PC的中點(diǎn),
所以FG∥BC,F(xiàn)G=BC.
因?yàn)樗倪呅?/p>
14、ABCD為矩形,且E為AD的中點(diǎn),
所以DE∥BC,DE=BC.
所以DE∥FG,DE=FG.
所以四邊形DEFG為平行四邊形.
所以EF∥DG.
又因?yàn)镋F?平面PCD,DG?平面PCD,
所以EF∥平面PCD.
13.(2019·山西臨汾模擬)如圖,已知四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E為MC的中點(diǎn),則下列結(jié)論不正確的是( C )
A.平面BCE⊥平面ABN B.MC⊥AN
C.平面CMN⊥平面AMN D.平面BDE∥平面AMN
解析:如圖,分別過(guò)A,C作平面ABCD的垂線AP,CQ,使得AP=
15、CQ=1,
連接PM,PN,QM,QN,將幾何體補(bǔ)成棱長(zhǎng)為1的正方體.
∴BC⊥平面ABN,又BC?平面BCE,
∴平面BCE⊥平面ABN,故A正確;
連接PB,則PB∥MC,顯然,PB⊥AN,
∴MC⊥AN,故B正確;
取MN的中點(diǎn)F,連接AF,CF,AC.
∵△AMN和△CMN都是邊長(zhǎng)為的等邊三角形,
∴AF⊥MN,CF⊥MN,
∴∠AFC為二面角A-MN-C的平面角,
∵AF=CF=,AC=,
∴AF2+CF2≠AC2,即∠AFC≠,
∴平面CMN與平面AMN不垂直,故C錯(cuò)誤;
∵DE∥AN,MN∥BD,
DE∩BD=D,DE,BD?平面BDE,MN∩AN
16、=N,MN,AN?平面AMN,
∴平面BDE∥平面AMN,故D正確.故選C.
14.(2019·泉州模擬)點(diǎn)P在正方體ABCD-A1B1C1D1的面對(duì)角線BC1上運(yùn)動(dòng),給出下列命題:
①三棱錐A-D1PC的體積不變;
②A1P∥平面ACD1;
③DP⊥BC1;
④平面PDB1⊥平面ACD1.
其中正確的命題序號(hào)是 ①②④ .
解析:連接BD交AC于點(diǎn)O,連接DC1交D1C于點(diǎn)O1,
連接OO1,則OO1∥BC1,
所以BC1∥平面AD1C,動(dòng)點(diǎn)P到平面AD1C的距離不變,
所以三棱錐P-AD1C的體積不變.
又因?yàn)閂三棱錐P-AD1C=V三棱錐A-D1PC,
所以
17、①正確;
因?yàn)槠矫鍭1C1B∥平面AD1C,A1P?平面A1C1B,
所以A1P∥平面ACD1,②正確;
由于當(dāng)點(diǎn)P在B點(diǎn)時(shí),DB不垂直于BC1,即DP不垂直BC1,故③不正確;
由于DB1⊥D1C,DB1⊥AD1,D1C∩AD1=D1,
所以DB1⊥平面AD1C.
又因?yàn)镈B1?平面PDB1,
所以平面PDB1⊥平面ACD1,④正確.
15.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,M為棱AC的中點(diǎn).AB=BC,AC=2,AA1=.
(1)求證:B1C∥平面A1BM;
(2)求證:AC1⊥平面A1BM;
(3)在棱BB1上是否存在點(diǎn)N,使得平面A
18、C1N⊥平面AA1C1C?如果存在,求此時(shí)的值;如果不存在,請(qǐng)說(shuō)明理由.
解:(1)證明:連接AB1與A1B,兩線交于點(diǎn)O,連接OM,如圖所示.
在△B1AC中,∵M(jìn),O分別為AC,AB1的中點(diǎn),
∴OM∥B1C,
又∵OM?平面A1BM,B1C?平面A1BM,
∴B1C∥平面A1BM.
(2)證明:∵側(cè)棱AA1⊥底面ABC,BM?平面ABC,
∴AA1⊥BM,
又∵M(jìn)為棱AC的中點(diǎn),AB=BC,∴BM⊥AC.
∵AA1∩AC=A,AA1,AC?平面ACC1A1,
∴BM⊥平面ACC1A1,∴BM⊥AC1.
∵AC=2,∴AM=1.
又∵AA1=,
∴在Rt△AC
19、C1和Rt△A1AM中,
tan∠AC1C=tan∠A1MA=,
∴∠AC1C=∠A1MA,
即∠AC1C+∠C1AC=∠A1MA+∠C1AC=90°,
∴A1M⊥AC1.
∵BM∩A1M=M,BM,A1M?平面A1BM,
∴AC1⊥平面A1BM.
(3)當(dāng)點(diǎn)N為BB1的中點(diǎn),即=時(shí),
平面AC1N⊥平面AA1C1C.
證明如下:
設(shè)AC1的中點(diǎn)為D,連接DM,DN.
∵D,M分別為AC1,AC的中點(diǎn),
∴DM∥CC1,且DM=CC1.
又∵N為BB1的中點(diǎn),
∴DM∥BN,且DM=BN,
∴四邊形BNDM為平行四邊形,
∴BM∥DN,
∵BM⊥平面ACC1A1,
∴DN⊥平面AA1C1C.
又∵DN?平面AC1N,
∴平面AC1N⊥平面AA1C1C.