(河北專版)2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第八章 專題拓展 8.5 圓的綜合問題(試卷部分)課件.ppt
《(河北專版)2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第八章 專題拓展 8.5 圓的綜合問題(試卷部分)課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(河北專版)2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第八章 專題拓展 8.5 圓的綜合問題(試卷部分)課件.ppt(61頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
8 5圓的綜合問題 中考數(shù)學(xué) 河北專用 一 與圓相關(guān)的翻折問題 好題精練 1 2017邯鄲一模 25 如圖1 已知以AE為直徑的半圓圓心為O 半徑為5 矩形ABCD的頂點(diǎn)B在直徑AE上 頂點(diǎn)C在半圓上 AB 8 點(diǎn)P為半圓上一點(diǎn) 1 矩形ABCD的邊BC的長(zhǎng)為 2 將矩形沿直線AP折疊 使點(diǎn)B落在點(diǎn)B 處 點(diǎn)B 到直線AE的最大距離是 當(dāng)點(diǎn)P與點(diǎn)C重合時(shí) 如圖2所示 AB 交DC于點(diǎn)M 求證 四邊形AOCM是菱形 并通過證明判斷CB 與半圓的位置關(guān)系 當(dāng)EB BD時(shí) 直接寫出EB 的長(zhǎng) 圖1圖2 解析 1 4 連接OC OB 8 5 3 OC 5 BC 4 2 8 提示 當(dāng)AB AE時(shí) 點(diǎn)B 到直線AE的距離最大 最大距離是8 證明 由折疊可知 OAC MAC OA OC OAC OCA OCA MAC OC AM 又 CM OA 四邊形AOCM是平行四邊形 又 OA OC AOCM是菱形 結(jié)論 CB 與半圓相切 證明 由折疊可知 AB C ABC 90 OC AM AB C B CO 180 B CO 90 CB OC OC為半圓的半徑 CB 與半圓相切 4 2或4 2 提示 過點(diǎn)B 作B G AE 若EB BD 則有 ABD AEB tan ABD tan AEB 設(shè)B G x EG 2x 則AG 10 2x 在Rt AB G中 AB 2 AG2 B G2 82 10 2x 2 x2 解得x 4 EB x 4 2 2 如圖 O的半徑為6 AB為弦 將 O沿弦AB所在的直線折疊后 上的點(diǎn)H與圓心O重合 1 求弦AB的長(zhǎng)度 2 點(diǎn)E是上的動(dòng)點(diǎn) 過點(diǎn)E作的切線交 O于C D兩點(diǎn) 當(dāng)點(diǎn)E與點(diǎn)O重合時(shí) 判斷CD與AB的位置關(guān)系 并說明理由 當(dāng)點(diǎn)C與點(diǎn)A重合時(shí) 判斷CD與AB的數(shù)量關(guān)系 并說明理由 請(qǐng)直接寫出線段CD的長(zhǎng)度的范圍 解析 1 如圖 連接OH 交AB于M 連接BO O的半徑為6 沿AB折疊 H和O重合 OM HM 3 OH AB 由勾股定理得BM 3 由垂徑定理得AB 2BM 6 2 當(dāng)點(diǎn)E與點(diǎn)O重合時(shí) CD AB 理由如下 如圖1 連接HE OH是半徑 CD切 H于E OH CD OH AB CD AB 如圖2 當(dāng)點(diǎn)C與點(diǎn)A重合時(shí) CD AB 6 理由如下 連接HD CD切 H于A HA CD HAD 90 HD為直徑 即HD 2 6 12 AH 6 在Rt DAH中 AD 6 即CD AB 6 6 CD 12 思路分析 1 連接OH 交AB于M 連接BO 根據(jù)勾股定理求出BM 根據(jù)垂徑定理求出AB 2BM 得出弦AB的長(zhǎng) 2 連接EH 根據(jù)折疊得出AB OH 根據(jù)切線的性質(zhì)定理得出OH CD 可推出CD與AB的位置關(guān)系 先判斷HD為 O的直徑 然后在Rt DAH中求出AD的長(zhǎng) 即可得出CD AB 當(dāng)點(diǎn)C和A或B重合時(shí) CD AB 當(dāng)和A B不重合時(shí) 根據(jù)直徑是最長(zhǎng)的弦 得CD 12 從而可得出線段CD的長(zhǎng)度的范圍 二 與圓相關(guān)的旋轉(zhuǎn)問題 1 2018保定競(jìng)秀一模 25 已知矩形ABCD AB 4 BC 3 以AB為直徑的半圓O在矩形ABCD的外部 如圖1 將半圓O繞點(diǎn)A順時(shí)針旋轉(zhuǎn) 度 0 180 1 半圓的直徑落在對(duì)角線AC上時(shí) 如圖2所示 半圓與AB的交點(diǎn)為M 求AM的長(zhǎng) 2 半圓與直線CD相切時(shí) 切點(diǎn)為N 與線段AD的交點(diǎn)為P 如圖3所示 求劣弧AP的長(zhǎng) 3 在旋轉(zhuǎn)過程中 半圓弧與直線CD只有一個(gè)交點(diǎn)時(shí) 設(shè)此交點(diǎn)與點(diǎn)C的距離為d 直接寫出d的取值范圍 解析 1 如圖1 連接B M 圖1在Rt ABC中 AB 4 BC 3 AC 5 AB 為直徑 AMB 90 AMB ABC 90 B AM CAB ABC AMB AM 2 如圖2 連接NO并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)Q 連接OP 圖2 半圓弧與直線CD相切于點(diǎn)N ON CN NQ AD 3 ON 2 OQ 1 在Rt OAQ中 sin OAQ OAQ 30 PAO 60 又 OA OP APO為等邊三角形 AOP 60 的長(zhǎng)度 3 4 d 4或d 4 詳解 當(dāng)B 第一次落在CD上時(shí) 如圖3 思路分析 1 利用圓周角定理和相似三角形的性質(zhì)引出含有AM的等式得解 2 利用切線的性質(zhì)先求得OQ的長(zhǎng) 進(jìn)而得出 OAQ和 PAO的大小 最后利用弧長(zhǎng)公式求出的長(zhǎng) 3 弄清半圓弧與直線CD的交點(diǎn)情況的界點(diǎn)即可得d的取值范圍 2 2017保定蓮池一模 25 在等邊 AOB中 將扇形COD按圖1擺放 使其半徑OC OD分別與OA OB重合 OA OB 2 OC OD 1 等邊三角形AOB不動(dòng) 讓扇形COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn) 線段AC BD也隨之變化 設(shè)旋轉(zhuǎn)角為 0 360 1 當(dāng)OC AB時(shí) 旋轉(zhuǎn)角 2 發(fā)現(xiàn) 線段AC與BD有何數(shù)量關(guān)系 請(qǐng)根據(jù)圖2給出證明 3 應(yīng)用 當(dāng)A C D三點(diǎn)共線時(shí) 求BD的長(zhǎng) 4 拓展 P是線段AB上任意一點(diǎn) 在扇形COD的旋轉(zhuǎn)過程中 請(qǐng)直接寫出PC的最大值與最小值 解析 1 60 或240 2 AC BD 證明 AOB為等邊三角形 AOB COD 60 AO OB 又 AOC 60 AOD BOD 60 AOD AOC BOD 在 AOC與 BOD中 AOC BOD SAS AC BD 3 當(dāng)A D C三點(diǎn)順次共線時(shí) 如圖 連接CD 過點(diǎn)O作OE CD 垂足為E 易知 COD為等邊三角形 OC OD 1 CE DE OE 在Rt AOE中 AE AC AE CE AC BD BD 當(dāng)A C D三點(diǎn)順次共線時(shí) 如圖 由上述方法可知 此時(shí)BD AC 4 PC的最大值為3 最小值為 1 提示 在旋轉(zhuǎn)過程中 點(diǎn)C在以點(diǎn)O為圓心 OC為半徑的圓上 當(dāng)點(diǎn)A O C順次共線 且點(diǎn)P與點(diǎn)A重合時(shí) PC取最大值 為3 當(dāng)點(diǎn)P位于AB的中點(diǎn) 且點(diǎn)O C P順次共線時(shí) PC取最小值 為 1 3 如圖 在Rt ABC中 C 90 BAC 60 AB 8 半徑為的 M與射線BA相切 切點(diǎn)為N 且AN 3 將Rt ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn) 設(shè)旋轉(zhuǎn)角為 0 180 1 當(dāng) 為時(shí) AC和 M相切 2 當(dāng)AC落在AN上時(shí) 設(shè)點(diǎn)B C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)D E 畫出旋轉(zhuǎn)后的Rt ADE 草圖即可 Rt ADE的直角邊DE被 M截得的弦PQ的長(zhǎng)為 判斷Rt ADE的斜邊AD所在的直線與 M的位置關(guān)系 并說明理由 3 設(shè)點(diǎn)M與AC的距離為x 在旋轉(zhuǎn)過程中 當(dāng)邊AC與 M有一個(gè)公共點(diǎn)時(shí) 直接寫出x的取值 解析 1 60 120 旋轉(zhuǎn)到如圖所示的位置時(shí) AC 與 M相切于G 連接MG MN AGM 90 AN與 M相切于N ANM 90 連接AM GAN 2 MAN 在Rt AMN中 MN AN 3 tan MAN MAN 30 GAN 60 BAC 60 CAC 180 60 60 60 思路分析 1 先利用切線的性質(zhì)得出 GAN 2 MAN 再利用三角函數(shù)求出 MAN 進(jìn)而得出 的值 2 把三角形ABC繞A旋轉(zhuǎn)120 就能得到圖形 先求出NE的長(zhǎng) 作MF DE 在Rt MFQ中 利用勾股定理可求出QF 根據(jù)垂徑定理知QF就是弦PQ的一半 即可求出PQ的長(zhǎng) 過M作AD的垂線 垂足為H 先判斷 MAN MAD 然后利用角平分線的性質(zhì)定理可得MN MH進(jìn)而得解 3 分兩種情況AC與 M相切或點(diǎn)C在 M內(nèi)部 利用勾股定理即可得出結(jié)論 三 與圓相關(guān)的平移與滾動(dòng)問題 1 2018秦皇島海港一模 25 如圖 在等邊 ABC中 AB 3 點(diǎn)O在AB的延長(zhǎng)線上 OA 6 且 AOE 30 動(dòng)點(diǎn)P從點(diǎn)O出發(fā) 以每秒個(gè)單位的速度沿射線OE方向運(yùn)動(dòng) 以P為圓心 OP為半徑作 P 同時(shí)點(diǎn)Q從點(diǎn)B出發(fā) 以每秒1個(gè)單位的速度沿折線B C A向點(diǎn)A運(yùn)動(dòng) Q與A重合時(shí) P Q同時(shí)停止運(yùn)動(dòng) 設(shè)P的運(yùn)動(dòng)時(shí)間為t秒 1 當(dāng) POB是直角三角形時(shí) 求t的值 2 當(dāng) P過點(diǎn)C時(shí) 求 P與線段OA圓成的封閉圖形的面積 3 當(dāng) P與 ABC的邊所在直線相切時(shí) 求t的值 4 當(dāng)線段OQ與 P只有一個(gè)公共點(diǎn)時(shí) 直接寫出t的取值范圍 2 2017邢臺(tái)模擬 25 如圖 A 45 ABC 60 AB MN BH MN于點(diǎn)H BH 8 點(diǎn)C在MN上 點(diǎn)D在AC上 DE MN于點(diǎn)E 半圓的圓心為點(diǎn)O 直徑DE 6 G為的中點(diǎn) F是上的動(dòng)點(diǎn) 發(fā)現(xiàn) CF的最小值是 CF的最大值為 探究 沿直線MN向右平移半圓 1 當(dāng)G落在 ABC的邊上時(shí) 求半圓與 ABC重合部分的面積 2 當(dāng)點(diǎn)E與點(diǎn)H重合時(shí) 求半圓在BC上截得的線段長(zhǎng) 3 當(dāng)半圓與 ABC的邊相切時(shí) 求CE的長(zhǎng) 解析發(fā)現(xiàn) 如圖1 圖1 當(dāng)F與E重合時(shí) CF的最小值為CE的長(zhǎng) 6 當(dāng)CF經(jīng)過圓心時(shí) CF的長(zhǎng)最大 最大值 OC OF 3 3 3 探究 1 如圖2 當(dāng)點(diǎn)G落在AC邊上時(shí) 點(diǎn)E與C重合 連接OG 圖2 G為的中點(diǎn) 則 DOG GOC 90 半圓與 ABC重合部分的面積 扇形ODG的面積 OCG的面積 32 3 3 如圖3 當(dāng)點(diǎn)G落在BC上 圖3 OG MN BGO BCE 60 設(shè)BC與半圓相交的另一個(gè)點(diǎn)為S 連接OS OS OG OSG是等邊三角形 半圓與 ABC重疊部分的面積 扇形OGS的面積 OGS的面積 32 32 綜上 當(dāng)G落在 ABC的邊上時(shí) 半圓與 ABC重合部分的面積為 或 2 點(diǎn)E與H重合時(shí) BH 8 OE 3 BO 5 設(shè)BC交半圓于R T OP RT于點(diǎn)P 則PT PR 圖4 CBE 30 OP 連接OR 則RP RT 2PR 3 如圖5 當(dāng)半圓與AC相切時(shí) 設(shè)切點(diǎn)為K 則CK CE 作KU DE于U 圖5 KOE 45 OK 3 KU OU EU 3 作KL MN于L 可得KL EU KCL 45 CK CE KL EU 3 3 如圖6 當(dāng)半圓與BC相切時(shí) 設(shè)切點(diǎn)為W 連接OW 則CE CW OCE OCW 30 圖6 OE 3 tan30 CE 3 所以當(dāng)半圓與 ABC的邊相切時(shí) CE 3 3或3 思路分析發(fā)現(xiàn) 當(dāng)F與E重合時(shí) CF的最小值為CE的長(zhǎng) 當(dāng)CF經(jīng)過圓心時(shí) CF的長(zhǎng)最大 探究 1 分兩種情形 當(dāng)點(diǎn)G落在AC邊上時(shí) 點(diǎn)E與C重合 半圓與 ABC重合部分的面積 扇形ODG的面積 OCG的面積 當(dāng)點(diǎn)G落在BC上時(shí) 重疊部分的面積 扇形OGS的面積 OGS的面積 2 點(diǎn)E與H重合時(shí) BH 8 OE 3 BO 5 作OP RT 先求出OP的長(zhǎng) 然后利用勾股定理求得PR 即可求出RT的長(zhǎng) 3 當(dāng)半圓與AC相切時(shí) 設(shè)切點(diǎn)為K 則CK CE 作KU DE于U 根據(jù)CK EU得解 當(dāng)半圓與BC相切時(shí) 設(shè)切點(diǎn)為W 連接OW 則CE CW 在Rt COE中 解直角三角形即可 3 2016石家莊模擬 24 如圖1 等邊 ABC的邊長(zhǎng)為3 分別以頂點(diǎn)B A C為圓心 BA長(zhǎng)為半徑作 我們把這三條弧所組成的圖形稱作萊洛三角形 顯然萊洛三角形仍然是軸對(duì)稱圖形 設(shè)點(diǎn)I為對(duì)稱軸的交點(diǎn) 1 如圖2 將這個(gè)圖形在線段MN上做無滑動(dòng)的滾動(dòng) 當(dāng)它滾動(dòng)一周后點(diǎn)A與端點(diǎn)N重合 則線段MN的長(zhǎng)為 2 如圖3 將這個(gè)圖形的頂點(diǎn)A與等邊 DEF的頂點(diǎn)D重合 且AB DE DE 2 將它沿等邊 DEF的邊做無滑動(dòng)的滾動(dòng) 當(dāng)它第一次回到起始位置時(shí) 求這個(gè)圖形在運(yùn)動(dòng)過程中所掃過的區(qū)域的面積 3 如圖4 將這個(gè)圖形的頂點(diǎn)B與 O的圓心O重合 O的半徑為3 將它沿 O的圓周做無滑動(dòng)的滾動(dòng) 當(dāng)它第n次回到起始位置時(shí) 點(diǎn)I所經(jīng)過的路徑長(zhǎng)為 請(qǐng)用含n的式子表示 解析 1 等邊 ABC的邊長(zhǎng)為3 ABC ACB BAC 60 l l l 線段MN的長(zhǎng)為l l l 3 2 如圖 由題意知 AG AF 又AB DE 等邊 DEF的邊長(zhǎng)為2 等邊 ABC的邊長(zhǎng)為3 S矩形AGHF 2 3 6 易知 BAG 120 S扇形BAG 3 圖形在運(yùn)動(dòng)過程中所掃過的區(qū)域的面積為3 S矩形AGHF S扇形BAG 3 6 3 27 3 如圖 連接BI并延長(zhǎng)交AC于D 連接AI I是 ABC的外心也是內(nèi)心 DAI 30 AD AC OI AI 當(dāng)它第1次回到起始位置時(shí) 點(diǎn)I所經(jīng)過的路徑是以O(shè)為圓心 OI為半徑的圓周長(zhǎng) 當(dāng)它第n次回到起始位置時(shí) 點(diǎn)I所經(jīng)過的路徑長(zhǎng)為n 2 2n 思路分析 1 先求出的弧長(zhǎng) 繼而得出萊洛三角形的周長(zhǎng)為3 即可得出MN的長(zhǎng) 2 先判斷出萊洛三角形繞等邊 DEF一周掃過的面積的圖形 再求面積 3 先判斷出萊洛三角形的一個(gè)頂點(diǎn)和O重合旋轉(zhuǎn)一周點(diǎn)I的路徑 再用圓的周長(zhǎng)公式即可得出點(diǎn)I所經(jīng)過的路徑長(zhǎng) 一 與圓相關(guān)的翻折問題 教師專用題組 1 如圖 在 O中 AB為直徑 點(diǎn)C為圓上一點(diǎn) 將劣弧沿弦AC翻折 交AB于點(diǎn)D 連接CD 如果 BAC 20 則 BDC A 80 B 70 C 60 D 50 答案B如圖 連接BC AB是 O的直徑 ACB 90 BAC 20 B 90 BAC 90 20 70 根據(jù)翻折的性質(zhì) 所對(duì)的圓周角為 B 所對(duì)的圓周角為 ADC ADC B 180 又 ADC BDC 180 BDC B 70 故選B 思路分析連接BC 根據(jù)直角三角形兩銳角互余求出 B 再根據(jù)翻折的性質(zhì)得到 ADC B 180 進(jìn)而推出 BDC B 即可得出結(jié)論 2 如圖 扇形OAB的半徑為4 AOB 90 P是半徑OB上一動(dòng)點(diǎn) Q是弧AB上的一動(dòng)點(diǎn) 1 當(dāng)P是OB中點(diǎn) 且PQ OA時(shí) 如圖1 弧AQ的長(zhǎng)為 2 將扇形OAB沿PQ對(duì)折 使折疊后的弧QB 恰好與半徑OA相切于C點(diǎn) 如圖2 若OP 3 則O到折痕PQ的距離為 解析 1 如圖 連接OQ P是OB中點(diǎn) OB 4 OP 2 PQ OA BPQ AOB 90 OP OQ 1 30 2 1 30 所以弧AQ的長(zhǎng) 2 如圖 找點(diǎn)O關(guān)于PQ的對(duì)稱點(diǎn)O 連接OO O B O C O P 設(shè)OO 與PQ交于點(diǎn)M 則OM O M OO PQ O P OP 3 點(diǎn)O 是所在圓的圓心 O C OB 4 折疊后的弧QB 恰好與半徑OA相切于C點(diǎn) O C AO O C OB 四邊形OCO B是矩形 在Rt O BP中 O B 2 在Rt OCO 中 OO 2 OM OO 2 即O到折痕PQ的距離為 思路分析 1 連接OQ 利用直角三角形直角邊是斜邊的一半 則這條直角邊所對(duì)的銳角為30 及平行線的性質(zhì)求出 PQO AOQ 30 再利用弧長(zhǎng)公式計(jì)算得解 2 先找點(diǎn)O關(guān)于PQ的對(duì)稱點(diǎn)O 連接OO O B O C O P 則易證四邊形OCO B是矩形 利用勾股定理求得O B的長(zhǎng) 從而求出OO 的長(zhǎng) 則OM OO 二 與圓相關(guān)的旋轉(zhuǎn)問題 1 2017石家莊正定二模 26 如圖 正方形ABCD的邊長(zhǎng)是5 圓D的半徑是3 在圓D上任取一點(diǎn)P 連接AP 將AP順時(shí)針旋轉(zhuǎn)90 到AP 連接BP 發(fā)現(xiàn) 無論點(diǎn)P在圓D上的什么位置 BP 的大小不變 BP 的長(zhǎng)是 思考 1 APD的最大面積是 2 點(diǎn)P與P 之間的最小距離是 3 當(dāng)點(diǎn)P與點(diǎn)B之間的距離最大時(shí) CBP 的度數(shù)是 探究 當(dāng)AP與圓D相切時(shí) 求 CDP 的面積 解析發(fā)現(xiàn) 連接DP 如圖所示 由旋轉(zhuǎn)的性質(zhì)得AP AP PAP 90 四邊形ABCD是正方形 BC AB AD 5 BAD 90 BAD DAP PAP DAP 即 BAP DAP 在 ABP 和 ADP中 ABP ADP SAS BP DP 3 思考 1 7 5 當(dāng)PD AD時(shí) 如圖所示 APD的最大面積 5 3 7 5 2 2 當(dāng)P在AD上時(shí) PP 最小 此時(shí)P 在AB上 AP AP 5 3 2 PAP 90 PP 2 3 45 當(dāng)點(diǎn)P在射線BD上時(shí) 如圖所示 點(diǎn)P與點(diǎn)B之間的距離最大 此時(shí) ABP ADP 180 45 135 CBP 135 90 45 探究 分兩種情況 如圖所示 連接DP DP CP 過點(diǎn)P 作AB的垂線 交AB于F 交CD于E 則EF CD EF BC 5 AP是圓D的切線 APD 90 ABP ADP AP B APD 90 AP AP 4 在Rt ABP 中 P F P E 5 CDP 的面積 5 如圖所示 連接DP DP CP 過點(diǎn)P 作AB的垂線 交AB于F 交CD于E 同理得P F P E 5 CDP 的面積 5 綜上所述 當(dāng)AP與圓D相切時(shí) CDP 的面積為或 思路分析發(fā)現(xiàn) 連接DP 由旋轉(zhuǎn)的性質(zhì)和正方形的性質(zhì)得出 ABP ADP 進(jìn)而BP DP 3 思考 1 當(dāng)PD AD時(shí) APD的面積最大 5 3 7 5 2 當(dāng)P在AD上時(shí) AP最小也就是PP 最小 3 當(dāng)點(diǎn)P在射線BD上時(shí) 點(diǎn)P與點(diǎn)B之間的距離最大 此時(shí) ABP ADP 135 CBP 45 探究 分兩種情況 在AD上方和AD下方連接DP DP CP 過點(diǎn)P 作AB的垂線 交AB于F 交CD于E 先由勾股定理得出AP AP 4 再利用等積法求出P F 進(jìn)而得出P E 或P E 即可求出 CDP 的面積 2 2017秦皇島海港二模 25 如圖 矩形ABCD中 AB 4 BC 2 點(diǎn)O在AB的延長(zhǎng)線上 OB 2 AOE 60 動(dòng)點(diǎn)P從點(diǎn)O出發(fā) 以每秒2個(gè)單位長(zhǎng)度的速度沿射線OE方向運(yùn)動(dòng) 以P為圓心 OP為半徑作 P 設(shè)P的運(yùn)動(dòng)時(shí)間為t秒 1 BOC PA的最小值是 2 當(dāng) P過點(diǎn)C時(shí) 求 P與線段OA圍成的封閉圖形的面積 3 當(dāng) P與矩形ABCD的邊所在直線相切時(shí) 求t的值 解析 1 30 2 3 如圖1 四邊形ABCD是矩形 圖1 ABC 90 OBC 90 tan BOC BOC 30 當(dāng)AP OP時(shí) PA的值最小 OA AB OB 4 2 在Rt AOP中 AOE 60 sin60 AP 4 2 2 3 故PA的最小值是2 3 2 如圖2 由題意得 OP r 2t 圖2設(shè) P與OA的另一個(gè)交點(diǎn)為M 連接PC PM 則PC PM PO r 2t POC PCO BOP BOC 60 30 30 BCO 90 BOC 90 30 60 PCB BCO PCO 60 30 90 即PC BC 此時(shí)直線BC與 P相切 過點(diǎn)P作PN OM于N PNB NBC BCP 90 四邊形PCBN是矩形 BN PC 2t NOP 60 在Rt PNO中 OPN 30 ON OP t BN ON BO 2t t 2 t r 當(dāng)t 時(shí) P經(jīng)過點(diǎn)C POM 60 且PO PM POM是等邊三角形 OM 2ON 2t PN t 2 S小弓形OM S扇形POM S POM S小弓形OM 2 S大弓形OM S圓P S小弓形OM 故 P與線段OA圍成的封閉圖形的面積為 或 3 由 2 可知當(dāng) P與矩形ABCD的邊BC所在的直線相切時(shí) t 當(dāng) P與矩形ABCD的邊AD所在的直線相切時(shí) 如圖3 圖3過P作PF AD于F 過P作PN AO于N AN FP r 2t ON OP t AN NO AO 2t t 2 4 t 當(dāng) P與矩形ABCD的邊CD所在的直線相切時(shí) 如圖4 圖4過P作PM DC于M 交OA于H 則PM OP 2t PH t PM PH BC 2t t 2 t 4 2 綜上所述 當(dāng) P與矩形ABCD的邊所在直線相切時(shí) t的值是或或4 2 思路分析 1 在直角 OBC中 先根據(jù)銳角的正切求 BOC的度數(shù) 根據(jù)垂線段最短可知 當(dāng)AP OP時(shí) PA的值最小 根據(jù)三角函數(shù)可求AP的最小值 2 過點(diǎn)P作PN OM 可得矩形PCBN 等邊三角形POM P與線段OA圍成的封閉圖形是大弓形OM或小弓形OM 利用扇形面積公式 三角形面積公式可得結(jié)論 3 分三種情況 當(dāng) P與矩形ABCD的邊BC所在的直線相切時(shí) 是第 2 問中的情況 此時(shí)t 當(dāng) P與矩形ABCD的邊AD所在的直線相切時(shí) 根據(jù)AN NO AO列式可得t的值 當(dāng) P與矩形ABCD的邊CD所在的直線相切時(shí) 根據(jù)PM PH BC列式可得t的值 3 如圖1 在 ABC中 ACB 90 AC BC 以點(diǎn)B為圓心 1為半徑作圓 設(shè)點(diǎn)P為 B上一點(diǎn) 線段CP繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90 得到線段CD 連接DA PD PB 1 求證 AD BP 2 若DP與 B相切 則 CPB的度數(shù)為 3 如圖2 當(dāng)B P D三點(diǎn)在同一直線上時(shí) 求BD的長(zhǎng) 4 BD的最小值為 此時(shí)tan CBP BD的最大值為 此時(shí)tan CPB 圖1圖2備用圖 解析 1 證明 ACB 90 DCP 90 ACD BCP AC BC CD CP ACD BCP SAS AD BP 2 45 或135 3 CDP為等腰直角三角形 CDP CPD 45 則 CPB 135 由 1 知 ACD BCP CDA CPB 135 AD BP 1 BDA CDA CDP 90 在Rt ABC中 AB 2 在Rt BDA中 BD 4 1 1 3 思路分析 1 根據(jù)SAS即可證明 ACD BCP 再根據(jù)全等三角形的性質(zhì)可得AD BP 2 利用切線的性質(zhì)結(jié)合等腰直角三角形求解 3 當(dāng)B P D三點(diǎn)在同一條直線上時(shí) 利用勾股定理可得BD的長(zhǎng) 4 當(dāng)B D A三點(diǎn)在同一條直線上時(shí) PBC 45 BD有最小值1 進(jìn)而得出當(dāng)B A D三點(diǎn)在同一條直線上時(shí) PBC 135 BD有最大值3 三 與圓相關(guān)的平移與滾動(dòng)問題 1 2017石家莊模擬 25 如圖 ABC中 ACB 90 ABC 45 BC 12cm 半圓O的直徑DE 12cm 點(diǎn)E與點(diǎn)C重合 半圓O以2cm s的速度從左向右運(yùn)動(dòng) 在運(yùn)動(dòng)過程中 點(diǎn)D E始終在BC所在的直線上 設(shè)運(yùn)動(dòng)時(shí)間為x s 半圓O與 ABC重疊部分的面積為S cm2 1 當(dāng)x s 時(shí) 點(diǎn)O與線段BC的中點(diǎn)重合 2 在 1 的條件下 求半圓O與 ABC的重疊部分的面積S 3 當(dāng)x為何值時(shí) 半圓O所在的圓與 ABC的邊所在的直線相切 解析 1 如圖1 當(dāng)點(diǎn)O在AB的中點(diǎn)時(shí) x 6s 圖1 2 如圖1 設(shè) O與AB交于點(diǎn)H 連接OH CH BC是直徑 CHB 90 AC BC ACB 90 HBC HCB 45 HC HB OH BC OH OB OC 6cm S S扇形OHC S OHB 62 6 6 18 9 cm2 3 如圖2 當(dāng) O與邊AB所在的直線相切時(shí) 點(diǎn)O在點(diǎn)B左側(cè) 易知OH BH 6cm OB 6cm OC 12 6 cm x 9 3 s 圖2如圖3 當(dāng) O與邊AB所在的直線相切時(shí) 點(diǎn)O在點(diǎn)B右側(cè) 易知OH BH 6cm OB 6cm OC 12 6 cm x 9 3 s 圖3如圖1 x 6s時(shí) O與AC所在的直線相切 易知當(dāng)x 0s時(shí) O與AC所在的直線相切 綜上所述 當(dāng)x 0或 9 3 或6或 9 3 s時(shí) 半圓O所在的圓與 ABC的邊所在的直線相切 2 2016石家莊二模 26 如圖1 已知點(diǎn)A 0 9 B 24 9 C 22 3 0 半圓P的直徑MN 6 且P A重合時(shí) 點(diǎn)M N在AB上 過點(diǎn)C的直線l與x軸的夾角 為60 現(xiàn)點(diǎn)P從A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向B運(yùn)動(dòng) 與此同時(shí) 半圓P以每秒15 的速度繞點(diǎn)P順時(shí)針旋轉(zhuǎn) 直線l以每秒1個(gè)單位長(zhǎng)度的速度沿x軸負(fù)方向運(yùn)動(dòng) 與x軸的交點(diǎn)為Q 當(dāng)P B重合時(shí) 半圓P與直線l停止運(yùn)動(dòng) 設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒 發(fā)現(xiàn) 1 點(diǎn)N距x軸的最近距離為 此時(shí) PA的長(zhǎng)為 2 t 9時(shí) MN所在直線是否經(jīng)過原點(diǎn) 請(qǐng)說明理由 3 如圖2 當(dāng)點(diǎn)P在直線l上時(shí) 求直線l分半圓P所成兩部分的面積比 拓展 如圖3 當(dāng)半圓P在直線l左側(cè) 且與直線l相切時(shí) 求點(diǎn)P的坐標(biāo) 探究 求出直線l與半圓P有公共點(diǎn)的時(shí)間有多長(zhǎng) 解析 發(fā)現(xiàn) 1 9 3 6 當(dāng)PN y軸 且N在AB下方時(shí) 點(diǎn)N距x軸最近 A 0 9 OA 9 MN 6 PN MN 3 點(diǎn)N距x軸的最近距離為9 3 此時(shí) APN 90 t 6 PA的長(zhǎng)為6 2 MN所在直線經(jīng)過原點(diǎn) 理由 當(dāng)t 9時(shí) APN 180 9 15 45 AP 9 1 9 設(shè)此時(shí)直線MN交y軸于點(diǎn)D 則AD AP tan45 9 1 9 又OA 9 所以點(diǎn)D與點(diǎn)O重合 即MN所在直線經(jīng)過原點(diǎn) 3 如圖1 當(dāng)點(diǎn)P在直線l上時(shí) 過點(diǎn)P作PH x軸 垂足為H 過點(diǎn)E作EF x軸 垂足為F 圖2則OQ OF FQ AE t 6 6 3 t 又CQ t OQ CQ 6 3 t t OC 22 3 得t 8 此時(shí) 點(diǎn)P的坐標(biāo)為 8 9 探究 當(dāng)半圓P在直線l右側(cè) 且與直線l相切時(shí) 如圖3所示 設(shè)直線l與AB交于點(diǎn)G 與半圓P相切于點(diǎn)R 連接PR 思路分析 發(fā)現(xiàn) 1 當(dāng)PN y軸 且N在AB下方時(shí) 點(diǎn)N距x軸最近 易得PN MN 3 點(diǎn)N距x軸的最近距離為9 3 此時(shí) APN 90 求得t 6 所以PA的長(zhǎng)為6 2 當(dāng)t 9時(shí) 得到 APN 180 9 15 45 AP 9 1 9 然后求出直線MN與y軸的交點(diǎn)到點(diǎn)A的距離 再與OA的長(zhǎng)比較 即可判斷MN所在直線經(jīng)過原點(diǎn) 3 當(dāng)點(diǎn)P在直線l上時(shí) 過點(diǎn)P作PH x軸 垂足為H 用t表示出OC的長(zhǎng) 即可求出t的值 然后求出 NPQ與 MPQ的大小 即可得到直線l分半圓P所成兩部分的面積比 拓展 設(shè)直線l與AB交于點(diǎn)E 與半圓P相切于點(diǎn)T 連接PT 易知PT 3 AE AP PE t 6 過點(diǎn)E作EF x軸 垂足為F 求得OQ 6 3 t 構(gòu)建方程 求得t的值 即得點(diǎn)P的坐標(biāo) 探究 設(shè)直線l與AB交于點(diǎn)G 與半圓P相切于點(diǎn)R 連接PR 易得PR 3 AG AP PG t 6 過點(diǎn)G作GJ x軸 垂足為J 構(gòu)建方程 求得t的值 得出結(jié)論- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
14.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 河北專版2019年中考數(shù)學(xué)一輪復(fù)習(xí) 第八章 專題拓展 8.5 圓的綜合問題試卷部分課件 河北 專版 2019 年中 數(shù)學(xué) 一輪 復(fù)習(xí) 第八 專題 拓展 綜合 問題 試卷 部分 課件
鏈接地址:http://kudomayuko.com/p-8723186.html