《福建省2019年中考數(shù)學總復習 第五單元 四邊形 課時訓練29 矩形練習》由會員分享,可在線閱讀,更多相關《福建省2019年中考數(shù)學總復習 第五單元 四邊形 課時訓練29 矩形練習(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、課時訓練29 矩形
限時:30分鐘
夯實基礎
1.如圖K29-1所示,在矩形ABCD中,對角線AC,BD交于點O,AC=13,BC=12,則△ABO的周長是( )
圖K29-1
A.25 B.20 C.17 D.18
2.[2018·內(nèi)江]如圖K29-2,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為( )
圖K29-2
A.31° B.28° C.62°
2、 D.56°
3.[2017·綿陽]如圖K29-3,矩形ABCD的對角線AC與BD交于點O,過點O作BD的垂線分別交AD,BC于E,F(xiàn)兩點.若AC=23,∠AEO=120°,則FC的長度為( )
圖K29-3
A.1 B.2 C.2 D.3
4.[2017·陜西]如圖K29-4所示,在矩形ABCD中,AB=2,BC=3,若點E為邊CD的中點,連接AE,過點B作BF⊥AE于點F,則BF長為( )
圖K29-4
A.3102 B.3105
3、 C.105 D.355
5.[2018·株洲]如圖K29-5,矩形ABCD的對角線AC與BD相交于點O,AC=10,P,Q分別為AO,AD的中點,則PQ的長度為 ?。?
圖K29-5
6.[2018·龍東地區(qū)]如圖K29-6,在平行四邊形ABCD中,添加一個條件 ,使平行四邊形ABCD是矩形.?
圖K29-6
7.如圖K29-7,點E是矩形ABCD內(nèi)任一點,若AB=3,BC=4,則圖中陰影部分的面積為 ?。?
圖K29-7
8.[2018·濱州]如圖K29-8,在矩形ABCD中,AB=2,BC=4,點E,F(xiàn)分別在BC,CD
4、上,若AE=5,∠EAF=45°,則AF的長為 ?。?
圖K29-8
9.[2018·湘西州]如圖K29-9,在矩形ABCD中,E是AB邊的中點,連接DE,CE.
(1)求證:△ADE≌△BCE;
(2)若AB=6,AD=4,求△CDE的周長.
圖K29-9
能力提升
10.[2017·瀘州]如圖K29-10所示,在矩形ABCD中,點E是邊BC的中點,AE⊥BD,垂足為F,則tan∠BDE的值是( )
圖K29-10
A.24 B.14 C.13
5、 D.23
11.[2018·江西]如圖K29-11,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉(zhuǎn),得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為 ?。?
圖K29-11
12.如圖K29-12所示,在矩形ABCD中,對角線AC=23,E為BC邊上一點,BC=3BE.將矩形ABCD沿AE所在直線折疊,B點恰好落在對角線AC上的B'處,則AB= .?
圖K29-12
13.[2018·攀枝花]如圖K29-13,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=13S矩形ABCD,則點P到A,B兩點的距離之和P
6、A+PB的最小值為 ?。?
圖K29-13
14.[2018·包頭]如圖K29-14,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=AD,連接BD,點E在AB上,且∠BDE=15°,DE=43,DC=221.
(1)求BE的長;
(2)求四邊形DEBC的面積.
(注意:本題中的計算過程和結果均保留根號)
圖K29-14
拓展練習
15.[2018·臨沂]將矩形ABCD繞點A順時針旋轉(zhuǎn)α(0°<α<360°),得到矩形AEFG.
(1)如圖K29-15,當點E在BD上時,求證:FD=CD.
(2)當α為何值時,GC=G
7、B?畫出圖形,并說明理由.
圖K29-15
參考答案
1.D
2.D
3.A
4.B [解析] 由題意得△ADE∽△BFA,由題意可知AD=3,DE=1,設AF=x,則BF=3x,由勾股定理得AF2+BF2=AB2,即x2+(3x)2=22,解得x=105或x=-105(舍去),所以3x=3105,即BF=3105.
5.2.5 [解析] ∵四邊形ABCD是矩形,
∴AC=BD=10,BO=DO=12BD=5.
∵P,Q是AO,AD的中點,
∴PQ是△AOD的中位線.
∴PQ=12DO=2.5.故填2.5.
6.答案不唯一,如∠ABC
8、=90°或AC=BD等 [解析] 判定一個平行四邊形是矩形,常見的有兩種思路,一是根據(jù)有一個角是直角的平行四邊形是矩形;二是根據(jù)對角線相等的平行四邊形是矩形.
7.6
8.4103 [解析] 取AB的中點M,連接ME,在AD上截取ND=DF,連接NF,設DF=DN=x,
∵四邊形ABCD是矩形,
∴∠D=∠BAD=∠B=90°,AD=BC=4,
∴NF=2x,AN=4-x,∠BME=∠DNF=45°,∴∠AME=∠FNA.
∵AB=2,∴AM=BM=1,
∵AE=5,AB=2,∴BE=1,∴ME=BM2+BE2=2,
∵∠EAF=45°,∴∠MAE+∠NAF=45°,
∵
9、∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,
∴AMFN=MEAN,∴12x=24-x,解得:x=43,
∴AF=AD2+DF2=4103.
9.解:(1)證明:∵四邊形ABCD是矩形,
∴AD=BC,∠A=∠B.
∵E是AB的中點,∴AE=BE.
在△ADE與△BCE中,AD=BC,∠A=∠B,AE=BE,
∴△ADE≌△BCE(SAS).
(2)∵AB=6,E是AB的中點,∴AE=BE=3.
在Rt△ADE中,AD=4,AE=3,根據(jù)勾股定理可得:
DE=AD2+AE2=42+32=5.
∵△ADE≌△BCE,∴DE=CE=5.
又∵矩形
10、ABCD中,CD=AB=6,∴DE+CE+CD=5+5+6=16.
即△CDE的周長為16.
10.A [解析] ∵AD∥BC,BE=CE,
∴BE∶AD=BF∶FD=EF∶AF=1∶2.
設EF=x,則AF=2x.
∵△BEF∽△AEB,
∴BE∶AE=EF∶BE,
∴BE2=EF·AE=3x2,
∴BE=3x,
∴AB2=AE2-BE2=6x2,
∴AB=6x.
∵AB·BE=AE·BF,
∴BF=2x.
在Rt△BDC中,BD=DC2+BC2=32x,∴DF=22x,
在Rt△DFE中,tan∠BDE=EFDF=x22x=24.
11.32 [解析] ∵AD
11、=EF=DE=3,∠D=90°,
∴AE2=AD2+DE2=18,∴AE=AB=18=32.
12.3
13.42 [解析] 設△PAB中AB邊上的高是h,
∵S△PAB=13S矩形ABCD,∴12AB·h=13AB·AD,
∴h=23AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作點A關于直線l的對稱點A',連接BA',交l于點P',則BA'即為所求的最短距離.在Rt△ABA'中,AB=4,AA'=2+2=4,
∴BA'=AB2+AA'2=42+42=42,即PA+PB的最小值為42.
14.解:(1)在四邊形ABCD中,
∵AD∥BC,∠ABC=90
12、°,∴∠BAD=90°.
∵AB=AD,∴∠ABD=∠ADB=45°,
∵∠BDE=15°,∴∠ADE=30°.
在Rt△AED中,∵DE=43,
∴AE=43·sin30°=23,AD=43·cos30°=6,∴AB=AD=6,∴BE=6-23.
(2)過點D作DF⊥BC于點F,∴∠BFD=90°,
∵∠BAD=∠ABC=90°,∴四邊形ABFD是矩形,∴BF=AD=6,DF=AB=6.
在Rt△DFC中,∵DC=221,∴FC=DC2-DF2=43,∴BC=6+43,
∴S四邊形DEBC=S△DEB+S△DCB=36+63.
15.[解析] (1)連接AF,結合旋轉(zhuǎn)和
13、矩形的性質(zhì)證得BD∥AF,且BD=AF,得到四邊形BDFA是平行四邊形,得到DF=AB,進而得到結論;(2)當GC=GB時,點G位于BC的垂直平分線上,分點G位于BC的左邊和右邊兩種情況討論.
解:(1)證明:如圖①,連接AF.
①
由四邊形ABCD是矩形,結合旋轉(zhuǎn)可得BD=AF,∠EAF=∠ABD.
∵AB=AE,∴∠ABD=∠AEB,∴∠EAF=∠AEB,∴BD∥AF,
∴四邊形BDFA是平行四邊形,∴FD=AB.
∵AB=CD,∴FD=CD.
(2)當α=60°或300°時,GC=GB.理由:
②
如圖②,當點G位于BC的垂直平分線上,且在BC的右邊時,易知點G也是AD的垂直平分線上的點,
∴DG=AG.
又∵AG=AD,∴△ADG是等邊三角形,
③
∴∠DAG=60°,∴α=60°.
如圖③,當點G位于BC的垂直平分線上,且在BC的左邊時,
同理,△ADG是等邊三角形,∴∠DAG=60°.
此時α=300°.
綜上所述,當α為60°或300°時,GC=GB.
10