《高考數(shù)學大二輪總復習與增分策略 專題七 概率與統(tǒng)計 第2講 概率練習 理》由會員分享,可在線閱讀,更多相關《高考數(shù)學大二輪總復習與增分策略 專題七 概率與統(tǒng)計 第2講 概率練習 理(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第2講 概 率
1.(2016課標全國乙)為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色的花不在同一花壇的概率是( )
A. B. C. D.
答案 C
解析 將4種顏色的花任選2種種在一個花壇中,余下2種種在另一個花壇,有((紅黃)、(白紫)),((白紫)、(紅黃)),((紅白)、(黃紫)),((黃紫)、(紅白)),((紅紫)、(黃白)),((黃白)、(紅紫))共6種種法,其中紅色和紫色不在一個花壇的種數(shù)有((紅黃)、(白紫)),((白紫)、(紅黃)),((紅白)、(黃紫)),((黃紫),(紅白)),共4種,故所求概率為P==,選C.
2.(2016課標全國乙)某公司的班車在7:30,8:00,8:30發(fā)車,小明在7:50至8:30之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過10分鐘的概率是( )
A. B. C. D.
答案 B
解析 如圖所示,畫出時間軸:
小明到達的時間會隨機的落在圖中線段AB中,而當他的到達時間落在線段AC或DB時,才能保證他等車的時間不超過10分鐘,根據(jù)幾何概型得所求概率P==,故選B.
3.(2016北京)袋中裝有偶數(shù)個球,其中紅球、黑球各占一半.甲、乙、丙是三個空盒,每次從袋中任意取出兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復上述過程,直到袋中所有球都被放入盒中,則( )
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中紅球與丙盒中黑球一樣多
C.乙盒中紅球不多于丙盒中紅球
D.乙盒中黑球與丙盒中紅球一樣多
答案 B
解析 取兩個球往盒子中放有4種情況:
①紅+紅,則乙盒中紅球數(shù)加1;
②黑+黑,則丙盒中黑球數(shù)加1;
③紅+黑(紅球放入甲盒中),則乙盒中黑球數(shù)加1;
④黑+紅(黑球放入甲盒中),則丙盒中紅球數(shù)加1.
因為紅球和黑球個數(shù)一樣,所以①和②的情況一樣多.③和④的情況完全隨機,③和④對B選項中的乙盒中的紅球數(shù)與丙盒中的黑球數(shù)沒有任何影響.①和②出現(xiàn)的次數(shù)是一樣的,所以對B選項中的乙盒中的紅球數(shù)與丙盒中的黑球數(shù)的影響次數(shù)一樣.綜上,選B.
4.(2016四川)同時拋擲兩枚質地均勻的硬幣,當至少有一枚硬幣正面向上時,就說這次試驗成功,則在2次試驗中成功次數(shù)X的均值是________.
答案
解析 由題可知,在一次試驗中,試驗成功(即至少有一枚硬幣正面向上)的概率為P=1-=,∵2次獨立試驗成功次數(shù)X滿足二項分布X~B,則E(X)=2=.
1.以選擇題、填空題的形式考查古典概型、幾何概型的基本應用;
2.將古典概型與概率的性質相結合,考查知識的綜合應用能力.
熱點一 古典概型和幾何概型
1.古典概型的概率
P(A)==.
2.幾何概型的概率
P(A)=.
例1 (1)(2015課標全國Ⅰ)如果3個正整數(shù)可作為一個直角三角形三條邊的邊長,則稱這3個數(shù)為一組勾股數(shù),從1,2,3,4,5中任取3個不同的數(shù),則這3個數(shù)構成一組勾股數(shù)的概率為( )
A. B. C. D.
(2)(2016山東)在[-1,1]上隨機地取一個數(shù)k,則事件“直線y=kx與圓(x-5)2+y2=9相交”發(fā)生的概率為________.
答案 (1)C (2)
解析 (1)從1,2,3,4,5中任取3個不同的數(shù)共有如下10個不同的結果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股數(shù)只有(3,4,5),所以概率為.故選C.
(2)由已知得,圓心(5,0)到直線y=kx的距離小于半徑,∴<3,解得-
n.
(1)求m與n的值;
(2)該校根據(jù)三個社團活動安排情況,對進入“攝影”社的同學增加校本選修學分1分,對進入“棋類”社的同學增加校本選修學分2分,對進入“ 國學”社的同學增加校本選修學分3分.求該新同學在社團方面獲得校本選修課學分分數(shù)的分布列及均值.
解 (1)依題意,
解得
(2)由題設該新同學在社團方面獲得校本選修課學分的分數(shù)為隨機變量X,則X的值可以為0,1,2,3,4,5,6.
而P(X=0)==;
P(X=1)==;
P(X=2)==;
P(X=3)=+=;
P(X=4)==;
P(X=5)==;
P(X=6)==.
故X的分布列為
X
0
1
2
3
4
5
6
P
所以E(X)=0+1+2+3+4+5+6=.
1.某校在2016年的中學數(shù)學挑戰(zhàn)賽中有1 000人參加考試,數(shù)學考試成績ξ~N(90,σ2)(σ>0,試卷滿分150分),統(tǒng)計結果顯示數(shù)學考試成績在70分到110分之間的人數(shù)約為總人數(shù)的,則此次數(shù)學考試成績不低于110分的考生人數(shù)約為( )
A.200 B.400 C.600 D.800
押題依據(jù) 正態(tài)分布多以實際問題為背景,有很強的應用價值,應引起考生關注.
答案 A
解析 依題意得P(70≤ξ≤110)=0.6,
P(ξ≤110)=0.3+0.5=0.8,P(ξ≥110)=0.2,
于是此次數(shù)學考試成績不低于110分的考生約有
0.21 000=200(人).
2.位于坐標原點的一個質點P按下述規(guī)則移動:質點每次移動一個單位,移動的方向為向上或向右,并且向上、向右移動的概率都是.質點P移動五次后位于點(2,3)的概率是________.
押題依據(jù) 二項分布模型和獨立重復試驗是生活中常見概率問題的抽象和提煉,也是高考的熱點.
答案
解析 由于質點每次移動一個單位,移動的方向為向上或向右,移動五次后位于點(2,3),所以質點P必須向右移動兩次,向上移動三次,故其概率為C()3()2=C()5=C()5=.
3.甲、乙兩人進行乒乓球比賽,約定每局勝者得1分,負者得0分,比賽進行到有一人比對方多2分或打滿6局時停止.設甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負相互獨立,比賽停止時一共已打ξ局.
(1)列出隨機變量ξ的分布列;
(2)求ξ的均值E(ξ).
押題依據(jù) 利用隨機變量求解概率問題是高考的必考點,一般以解答題形式出現(xiàn),考查離散型隨機變量的均值.
解 (1)依題意知,ξ的所有可能取值為2,4,6.
設每2局比賽為一輪,則該輪結束時比賽停止的概率為()2+()2=.
若該輪結束時比賽還將繼續(xù),則甲、乙在該輪中必是各得1分,此時,該輪比賽結果對下輪比賽是否停止沒有影響.則有P(ξ=2)=,P(ξ=4)==,P(ξ=6)=()2=,
所以ξ的分布列為
ξ
2
4
6
P
(2)E(ξ)=2+4+6=.
A組 專題通關
1.一枚硬幣連擲2次,只有一次出現(xiàn)正面的概率為( )
A. B.
C. D.
答案 D
解析 一枚硬幣連擲2次可能出現(xiàn)(正,正)、(反,反)、(正,反)、(反,正)四種情況,只有一次出現(xiàn)正面的情況有兩種,∴P==,故選D.
2.某高中數(shù)學老師從一張測試卷的12道選擇題、4道填空題、6道解答題中任取3道題作分析,則在取到選擇題時解答題也取到的概率為( )
A. B.
C. D.
答案 C
解析 從題設22道題中任取3題,選到選擇題的選法有(C-C)種,選到選擇題也選到解答題的選法可分兩類,選到1道選擇題,或選到2道選擇題,因此方法數(shù)為C(CC+C)+CC,所以所求概率為P=,故選C.
3.已知三個正態(tài)分布密度函數(shù)φi(x)=e(x∈R,i=1,2,3)的圖象如圖所示,則( )
A.μ1<μ2=μ3,σ1=σ2>σ3
B.μ1>μ2=μ3,σ1=σ2<σ3
C.μ1=μ2<μ3,σ1<σ2=σ3
D.μ1<μ2=μ3,σ1=σ2<σ3
答案 D
解析 正態(tài)曲線關于直線x=μ對稱,由題圖可知μ1<μ2=μ3;而σ決定正態(tài)曲線的形狀,σ越小,圖象越“瘦而高”,σ越大,圖象越“胖而矮”,所以σ1=σ2<σ3,故選D.
4.甲、乙兩個運動員射擊命中環(huán)數(shù)ξ,η的分布列如下表.其中射擊成績比較穩(wěn)定的運動員是( )
環(huán)數(shù)k
8
9
10
P(ξ=k)
0.3
0.2
0.5
P(η=k)
0.2
0.4
0.4
A.甲 B.乙
C.一樣 D.無法比較
答案 B
解析 由題中分布列可得,E(ξ)=0.38+0.29+0.510=9.2,E(η)=0.28+0.49+0.410=9.2=E(ξ),D(ξ)=(8-9.2)20.3+(9-9.2)20.2+(10-9.2)20.5=0.76,D(η)=(8-9.2)20.2+(9-9.2)20.4+(10-9.2)20.4=0.56,則p的取值范圍是________.
答案 (0,)
解析 由已知得P(η=1)=p,P(η=2)=(1-p)p,P(η=3)=(1-p)2,則E(η)=p+2(1-p)p+3(1-p)2=p2-3p+3>,解得p>或p<,又p∈(0,1),
所以p∈(0,).
9.若隨機變量ξ~N(2,1),且P(ξ>3)=0.158 7,則P(ξ>1)=________.
答案 0.841 3
解析 因為ξ~N(2,1),且P(ξ>3)=0.158 7,
所以P(ξ<1)=P(ξ>3)=0.158 7,
所以P(ξ>1)=1-P(ξ<1)=1-0.158 7=0.841 3.
10.有三位環(huán)保專家從四個城市中每人隨機選取一個城市完成一項霧霾天氣調查報告,三位專家選取的城市可以相同,也可以不同.
(1)求三位環(huán)保專家選取的城市各不相同的概率;
(2)設選取某一城市的環(huán)保專家有ξ人,求ξ的分布列及均值.
解 (1)事件A表示“三位環(huán)保專家選取的城市各不相同”,則P(A)==.
(2)由題意可知ξ=0,1,2,3,
P(ξ=0)==,P(ξ=1)==,
P(ξ=2)==,P(ξ=3)==,
故ξ的分布列為
ξ
0
1
2
3
P
均值E(ξ)=0+1+2+3=.
B組 能力提高
11.某人射擊一次擊中的概率為,經(jīng)過3次射擊,此人至少有2次擊中目標的概率為( )
A. B. C. D.
答案 C
解析 該人3次射擊,恰有2次擊中目標的概率是
P1=C2,
3次全部擊中目標的概率是P2=C3,
所以此人至少有2次擊中目標的概率是
P=P1+P2=C2+C3=.
12.先后擲兩次骰子(骰子的六個面上分別有1,2,3,4,5,6個點),落在水平桌面后,記正面朝上的點數(shù)分別為x,y,設事件A為“x+y為偶數(shù)”,事件B為“x,y中有偶數(shù)且x≠y”,則概率P(B|A)等于( )
A. B.
C. D.
答案 B
解析 正面朝上的點數(shù)(x,y)的不同結果共有CC=36(種).
事件A:“x+y為偶數(shù)”包含事件A1:“x,y都為偶數(shù)”與事件A2:“x,y都為奇數(shù)”兩個互斥事件,其中P(A1)==,P(A2)==,
所以P(A)=P(A1)+P(A2)=+=.
事件B為“x,y中有偶數(shù)且x≠y”,所以事件AB為“x,y都為偶數(shù)且x≠y”,所以P(AB)==.
由條件概率的計算公式,得P(B|A)==.
13.(2015湖南)某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為X,求X的分布列和均值.
解 (1)記事件A1={從甲箱中摸出的1個球是紅球},
A2={從乙箱中摸出的1個球是紅球},
B1={顧客抽獎1次獲一等獎},B2={顧客抽獎1次獲二等獎},C={顧客抽獎1次能獲獎}.
由題意,A1與A2相互獨立,A12與1A2互斥,B1與B2互斥,且B1=A1A2,B2=A12+1A2,C=B1+B2.
因為P(A1)==,P(A2)==,
所以P(B1)=P(A1A2)=P(A1)P(A2)==,
P(B2)=P(A12+1A2)=P(A12)+P(1A2)
=P(A1)P(2)+P(1)P(A2)
=P(A1)[1-P(A2)]+[1-P(A1)]P(A2)
=+=.
故所求概率為
P(C)=P(B1+B2)=P(B1)+P(B2)=+=.
(2)顧客抽獎3次可視為3次獨立重復試驗,由(1)知,顧客抽獎1次獲一等獎的概率為,所以X~B.
于是
P(X=0)=C03=,
P(X=1)=C12=,
P(X=2)=C21=,
P(X=3)=C30=.
故X的分布列為
X
0
1
2
3
P
X的均值為E(X)=3=.
鏈接地址:http://kudomayuko.com/p-11844785.html