購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
河南理工萬方科技學院本科畢業(yè)設(shè)計
模具設(shè)計對應用微發(fā)泡技術(shù)生產(chǎn)的
聚合物孔結(jié)構(gòu)的影響
摘要:在這個課題中設(shè)計了兩套模具并應用在了微發(fā)泡技術(shù)去生產(chǎn)帶有多孔結(jié)構(gòu)注塑品。為了獲得理想的孔結(jié)構(gòu),研究了許多工藝參數(shù)來指示工藝參數(shù)對孔結(jié)構(gòu)的影響。每個模具都分別進行了這種工藝參數(shù)的研究,以便于模具的設(shè)計對孔結(jié)構(gòu)的影響在相同的工藝參數(shù)設(shè)置下不必再做研究。發(fā)現(xiàn)了在微發(fā)泡技術(shù)中,模具的設(shè)計也對孔結(jié)構(gòu)有影響。一套合適的模具設(shè)計能改善生產(chǎn)出的孔結(jié)構(gòu),如孔數(shù)、孔徑、以及相互關(guān)系。
關(guān)鍵詞:模具設(shè)計 晶格形態(tài) 微發(fā)泡 注塑模具藥劑注入 多孔聚合物 聚氨脂
微發(fā)泡技術(shù)作為一種高效的微單元的注射模具生產(chǎn)過程,被廣泛應用于汽車和家具工廠中。在大多數(shù)的情況下,微發(fā)泡技術(shù)用來節(jié)省原材料,但他也用來生產(chǎn)帶有近似多孔結(jié)構(gòu)的注入制品。CO2作為流動介質(zhì)被注射到注塑模具機器的制品界面內(nèi)。在注射模具機器的注塑成型時期,有特別緊急的情況下,這種流動介質(zhì)通過氣體供應鏈或注射器注射入聚合物。塑料成型后,聚合物的混合體逐漸融化且氣體通過噴嘴注射入模具中,同時由于模具的迅速下壓可以生產(chǎn)出泡沫結(jié)構(gòu)。如今用微發(fā)泡技術(shù)生產(chǎn)出的主要產(chǎn)品已經(jīng)接近晶格泡沫了。
一些課題易經(jīng)研究了微發(fā)泡技術(shù)中關(guān)鍵工藝參數(shù)和生產(chǎn)的晶格泡沫結(jié)構(gòu)。已發(fā)現(xiàn)通過變換工藝參數(shù)微發(fā)泡過程中的孔結(jié)構(gòu)可以被調(diào)整。然而,目前還沒有文獻說明模具設(shè)計通過微發(fā)泡技術(shù)對孔形態(tài)的影響。
在這個課題中,設(shè)計了兩個模具并用在了微發(fā)泡過程中為醫(yī)藥用去生產(chǎn)具有多孔結(jié)構(gòu)的注入品。工藝參數(shù)的研究被分別獨立地進行在那兩套模具上。通過比較兩套模具在同樣的工藝參數(shù)設(shè)置下生產(chǎn)出的注入品的孔結(jié)構(gòu)來研究模具設(shè)計對多孔結(jié)構(gòu)的影響。
圖1微發(fā)泡技術(shù)草圖
聚合過程:
藥劑等級熱塑性的聚氨脂TPU被選坐注入品的原材料。具備用來冷卻模具的溫度控制單元的注塑模具機器被用作樣品的產(chǎn)品。這種注塑模具機器被Trexelinc.woburn;MA,USA裝備有一個微發(fā)泡系統(tǒng)。這個微發(fā)泡簡化的顯示在圖1中。在注射模具機器的注塑成型時期,有特別緊急的情況下,這種流動介質(zhì)通過氣體供應鏈或注射器注射入聚合物。塑料成型后,聚合物的混合體逐漸融化且氣體通過噴嘴注射入模具中,同時由于模具的迅速下壓可以生產(chǎn)出泡沫結(jié)構(gòu)。
CO2被作為流動介質(zhì)(CO2為保護氣體)
為了生產(chǎn)這個注入品,設(shè)計并應用了兩個特殊的模具,從A模具和B模具生產(chǎn)的構(gòu)件的電子圖2所示。A模具有六個戒指形狀的注入品且僅用來做了泡沫過程和參數(shù)研究的可行性的初步試驗。為了更高的生物要求和預期產(chǎn)品,B模具在從A模具的注塑品的實驗結(jié)果的基礎(chǔ)上被設(shè)計具備六個實心磁盤狀的注塑品。
圖2不同的模具設(shè)計
兩模具有相似的刃口,導柱和澆注口。B模具有個較短的聚合物揮發(fā)流動的模腔和2.8的L/D(長比厚)。同時,模具A的L/D位4.7。這意味著從B模具生產(chǎn)出的構(gòu)件相應的更厚但更短。B模具的優(yōu)勢是主導晶體核子和生長的揮發(fā)流動的能量損失減少,因為它有更短的流動路程(小的L/D)。作為結(jié)果可能得到更好的孔形態(tài),如更大的孔徑,更高的多孔性等。另一方面,B模具有個更大的性能,它意味著參數(shù)變化的更多的可能性。在一般的注塑模過程,B模不好的一面是相應的更厚的制件將導致B腔內(nèi)的不完全充滿,一個長的冷卻時期和制件的大量回縮。如果發(fā)泡工藝被應用,這些問題可被部分或全部解決是因為發(fā)泡聚合體的膨脹。
實驗方案:
設(shè)置可變參數(shù)的選擇是基于核子原理和文獻收索的知識??勺儏?shù)的范圍和固定參數(shù)的值如表1中所示。這些實驗是通過變化變量中的一個,而保持其它的不變而完成的。整個過程參數(shù)的研究是在兩套模具上分別獨立進行的。從兩套模具中生產(chǎn)的注塑制品用來進行比較在精確相同的過程參數(shù)下被生產(chǎn)的,以便于顯示不同模具的影響。
表1:在這個課題中,微發(fā)泡工藝的可變參數(shù)的范圍和變量參數(shù)的值。微晶格工藝壓力MPP是一個保持聚合體揮發(fā)氣體的正壓力。這個壓力是真正的塑性壓力。
可變參數(shù)
檢測范圍
變量參數(shù)
值
CO2濃度
1-6wt%
冷卻時間
120s
重量減輕度
35-65%
保持壓力
450bar
注射速度
30-300mm/s
起始保壓
0.5mm
塑化力/MPP
166-220bar
保壓時間
0.5s
塑化溫度
180-2108C*
夾持噸位
200KN
模具溫度
25-858C*
塑化周期
40min
注射壓力
0-3000bar
宏觀與微觀結(jié)構(gòu)的特征
瀏覽電子顯微鏡被用于注塑制品橫截面的孔形態(tài)的觀察。將樣品用美工刀切開,然后在具有5到15KN的高度真空下,通過使用一個斷續(xù)的涂層器,在其上覆蓋一層薄的黃金層。多孔形態(tài)的特征如孔的尺寸和孔量通過從一個樣品中數(shù)平均數(shù)目和電子顯微形狀能被計算出來。在數(shù)碼顯微的軟件的幫助下,具有一定尺寸的切面被選出來,所有的孔被人工測量??椎钠骄睆奖挥嬜鱀ce。由于在顯微中所顯示的孔是3D項目的2D工程,他們的最大直徑在圖中不能描繪。下面方程用于決定最大的球形直徑,記為修正過的中孔徑,從測量孔徑中得來。
Dcorr=Dce/0.616
顯微CT被用于注制品的多孔干涉性的等價測量。從每個注件的3個8mm&11mm圓柱試件中7微米來用一個59KV的電壓和一個167微安的解決方案。用天空瀏覽提供的軟件包來指導圖形再現(xiàn)和分析試件繞他們的長軸旋轉(zhuǎn)180*且每旋轉(zhuǎn)0.4*則3個同化圖形被記錄。借助于標準天空瀏覽再現(xiàn)軟件,應用3D圓錐體光束算法,那些試件的原始圖形被再現(xiàn)成系列的日冕定位X線斷層。對于再現(xiàn)品,光束強度被設(shè)置到20%,原人工制品減少量到12。
應用標準的天空瀏覽軟件,這再現(xiàn)軸向的微比圖形分析被運行。首先,進行臨界分析是為支架X線斷層灰色區(qū)域大多能被他們的多孔性相應參數(shù)精確地代表而去決定臨界值。這個研究中,臨界值被設(shè)置為65至225之間。過濾功能將多余的噪音除去。所有小于500分貝且與空間實體沒有聯(lián)系的物質(zhì)被這樣優(yōu)先除去以便于更深的分析。為了消除潛在的邊緣影響,選擇了支架中心處一個直徑為5毫米、高2.5毫米的圓柱體的權(quán)益值。然后支架多孔性如下被計算:
多孔性=100%—權(quán)益量中區(qū)分材料量的百分值
所有圖形經(jīng)受3D分析,接著應用在可以從外面通過一個一定的最小尺寸的開口處進入的支架中。允許測量部分孔體積的壓縮包功能的相聯(lián)系的量值。兩個3D測量間進行壓縮包過程通過等于過大于臨界值的尺寸入口去壓縮在一個支架的權(quán)益值的外界線。(研究中用30—280um)相關(guān)性被如下計算:
相關(guān)性=V—V壓/V—Vm
其中V指VOT的總體積,V壓指壓縮包之后的VOT的體積,而Vm指支架材料的體積。
結(jié)果與討論
該SEM圖形(圖3)顯示了當其他過程參數(shù)不變(減重35%,塑性壓力180磅,模具溫度25C,氣體容積2%)而注射速度以30mm/s的量變化時兩模具的泡沫注入件的孔結(jié)構(gòu)。
圖3
發(fā)現(xiàn)模具B生產(chǎn)的泡沫注入件的左圖所示的尺寸比從模A生產(chǎn)的大得多。相關(guān)的孔尺寸即兩相關(guān)孔間的可視區(qū)也有相同的變化的趨勢。從圖中我們可以定量地看出在同樣過程參數(shù)下模具B生產(chǎn)的注入品以模具A的有更大的孔尺寸和相關(guān)的孔尺寸,而且可能又高的多樣性。
圖表4
從圖4我們發(fā)現(xiàn)在每一個不同的注射速度模具B的制品比模具A有更高的多孔性。模具B制品的多孔性排布在73%至79%之間,然而模具A的在60%至67%之間。同時,模具B的制品的多孔性的標準偏差比模具A的偏差小得多。
圖表5
圖表5顯示不同的注射速度下兩模具的孔的平均尺寸。對于兩模具來說,隨著注射速度的提升,孔的尺寸減少。在別的課題中也發(fā)現(xiàn)同樣的結(jié)果。隨著注射速度的增加,模具B的制品的孔徑從340+/—17mm減少到246+/—20mm;同樣注射速度下,模具A顯示由制品孔徑從234+/—90到152+/—34mm。從模具B中得到的孔的尺寸在所有速度下,與模具A相比較也都較高。很明顯模具B的標準偏差也比A的小得多。
圖表6
圖表6顯示泡沫住射品的相關(guān)的孔尺寸。該相關(guān)的孔尺寸對在生物學中的組織生長非常重要。模具B的泡沫制品的相關(guān)的孔尺寸有一個916+/—um到67+/—7um的范圍,而模具A的這個范圍是35+/—10um到19+/—8um。這個變化也與兩模具的泡沫制品的平均孔尺寸的發(fā)現(xiàn)相對應。
我們從圖表3—6中可以推斷出模具B的改善了的模具設(shè)計不能影響孔結(jié)構(gòu)的變化趨勢。比如注射速度的提高可以減小孔尺寸,但它和泡沫制品的相關(guān)性的孔尺寸一樣能增加多孔性和平均孔尺寸。與此同時,孔結(jié)構(gòu)的標準偏差也有很大減小。換句話說,模具B的泡沫制品的孔結(jié)構(gòu)與模具A相比有更高的多孔性,更大的孔尺寸和更加均勻。
圖表7
圖表7顯示了在包括注射速度等不同可兇的過程參數(shù)變量下兩模具生產(chǎn)的量大的多孔性的比較。在每一種過程參數(shù)變量中,兩模具在相同的設(shè)置值下經(jīng)常獲得最大化的多孔性,比如模具B和模具A在300mm/s的注射速度下分別為79%和67%。發(fā)現(xiàn)了模具B指示在每一種參數(shù)變量,更高的最大化的多孔性。模具B生產(chǎn)的減少35%的重量的多孔性顯示了6%的最小升量;同時,通過射速的變化發(fā)生了14%的最大值多孔性提升
量。
圖表8
圖表8中說明了兩模具不同種類的工藝參數(shù)的變化下,最大化孔尺寸間的不同。兩模具制品說明了沒種的變化同樣的工藝參數(shù)設(shè)置下也有最大孔尺寸。模具B通常比模具A具有更大的孔尺寸。在塑性成形的溫度變化下,模具B的最大值的孔尺寸的最小升高量為14%,而然發(fā)現(xiàn)在注射速度變化下,孔尺寸的最大提升量為45%的值。
圖表7和圖表8已經(jīng)說明了不僅從注射速度的變化而且從所有工藝參數(shù)的變化下都能觀察到模具設(shè)計 的變化??梢灾率谷缱畲蠡目壮叽绾投嗫仔缘瓤仔螒B(tài)的改善。在聚合體流到模具腔期間,模具B短的L/D將導致主導單元核子的能量流失的減少。有模具B產(chǎn)生的相關(guān)的更厚的制品也相應需要更長的冷卻時間,這對模具的晶格生長非常重要??紤]到這些方面相互作用的可能性,在這個課題中應用晶格核子原理的公式去描述最終空形態(tài)的變化非常困難;但是通過實驗模具設(shè)計對諸如多孔性和平均孔尺寸的空形態(tài)的影響都被成功地觀察到了。
結(jié)論
這個課題專門研究了模具設(shè)計對孔形態(tài)的潛在影響。在模具B的泡沫樣品中,我們看到了改善了的像更高的多孔性,更大的平均孔尺寸和更小的偏差等孔形態(tài)。這指示出除了工藝參數(shù)的影響外,模具設(shè)計即制造設(shè)計也對發(fā)泡工藝的發(fā)泡行為有很明顯的影響,這給我們了一個若工藝參數(shù)被限制,通過一個更合適的模具設(shè)計來改善空形態(tài)的可能。
多孔性和孔尺寸對多孔藥劑設(shè)備是關(guān)鍵的屬性,因為晶格需要空間去生長。另外,孔需要被相互聯(lián)系去允許晶格遷移到多孔結(jié)構(gòu)。此課題說明了當生產(chǎn)多孔藥劑聚合體設(shè)備,合適的模具對成功的設(shè)置來說只一個關(guān)鍵的因素。
致謝
作者對Bayerische Forschungsstiftung 用授權(quán)號碼AZ639/05的資金支持表示感謝!
12