購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
?
?
湖南農業(yè)大學全日制普通本科生
畢業(yè)論文(設計)開題報告
?
?
?
?
?
?
?
?
?
?
?
學生姓名
?
學????號
?
年級專業(yè)及班級
2009級機械設計制造及其自動化(1)班
指導教師及職稱
?副教授
學????院
工學院
?
?
?
?
?
?
?
2013?年?1?月?7?日
?
畢業(yè)論文(設計)題目
煤炭螺旋輸送機的設計
文獻綜述(選題研究意義、國內外研究現(xiàn)狀、主要參考文獻等,不少于1000字)
一、選題研究意義
在過去的幾十年中,我國機械運輸業(yè)完成了一些標志性的研究與開發(fā),取得了相應的學術成就,并得以滿足了運輸業(yè)中運輸貨物的部分需求,但隨著當今社會科學技術的飛速發(fā)展,其科技含量也逐漸提升,而國家的經濟發(fā)展與運輸業(yè)的發(fā)展息息相關,運輸業(yè)的興衰足以反映一個國家的強弱,是國家綜合實力的主要標志之一,然而運輸業(yè)的發(fā)展需要相應的運輸設備來運營??梢?,運輸設備的更新對于運輸業(yè)發(fā)展來說是多么重要的一個研究課題。
本課題的選題最主要是論述螺旋輸送機研究與設計的重要性,并根據(jù)當前運輸設備的發(fā)展方向得以創(chuàng)新,其發(fā)展方向主要表現(xiàn)為大型化發(fā)展、擴大使用范圍、物料自動分揀、降低能源消耗、減少污染等方面,這些方面的研究對于運輸業(yè)的穩(wěn)步前進有極其重要的關系,每一方面的成功研究都能算為一個突破,進而造福人類。而該課題的研究最主要就是解決這幾個方面。
?
二、國內外研究現(xiàn)狀
?1、國外螺旋輸送機技術的發(fā)展現(xiàn)狀
???螺旋輸送機技術的發(fā)展很快,其主要表現(xiàn)在2個方面:一方面是螺旋輸送機的功能多元化、應用范圍擴大化,如高傾角帶輸送機、管狀螺旋輸送機、空間轉彎螺旋輸送機等各種機型;另一方面是螺旋輸送機本身的技術與裝備有了巨大的發(fā)展,尤其是長距離、大運量、高帶速等大型螺旋輸送機已成為發(fā)展的主要方向,其核心技術是開發(fā)應用于了螺旋輸送機動態(tài)分析與監(jiān)控技術,提高了螺旋輸送機的運行性能和可靠性。其關鍵技術與裝備有以下幾個特點:
⑴設備大型化。其主要技術參數(shù)與裝備均向著大型化發(fā)展,以滿足年產300-500萬頓以上高產高效集約化生產的需要。
⑵應用動態(tài)分析技術和機電一體化、計算機監(jiān)控等高新技術,采用大功率軟起動與自動張緊技術,對輸送機進行動態(tài)監(jiān)測與監(jiān)控,大大地降低了輸送帶的動張力,設備運行性能好,運輸效率高。
⑶采用多機驅動與中間驅動及其功率平衡、輸送機變向運行等技術,使輸送機單機運行長度在理論上已有受限制,并確保了輸送系統(tǒng)設備的通用性、互換性及其單元驅動的可靠性。
⑷新型、高可靠性關鍵元部件技術。如包含CST等在內的各種先進的大功率驅動裝置與調速裝置、高壽命高速托輥、自清式滾筒裝置、高效貯帶裝置、快速自移機尾等。如英國FSW生產的FSW1200/(23)×400(600)工作面順槽螺旋輸送機就采用了液粘差速或變頻調速裝置,運輸能力達3000?t/h以上,它的機尾與新型轉載機(如美國久益公司生產的S500E)配套,可隨工作面推移而自動快速自移、人工作業(yè)少、生產效率高。
2、國內螺旋輸送機技術的發(fā)展現(xiàn)狀
????我國生產制造的螺旋輸送機的品種、類型較多。在“八五”期間,通過國家一條龍“日產萬噸綜采設備”項目的實施,螺旋輸送機的技術水平有了很大提高,煤礦井下用大功率、長距離螺旋輸送機的關鍵技術研究和新產呂開發(fā)都取得了很大的進步。如大傾角長距離螺旋輸送機成套設備、高產高效工作面順槽可伸縮螺旋輸送機等均填補了國內空白,并對螺旋輸送機的減低關鍵技術及其主要元部件進行了理論研究和產品開發(fā),研制成功了多種軟起動和制動裝置以及以PLC為核心的可編程電控裝置,驅動系統(tǒng)采用調速型液力偶合器和行星齒輪減速器。
?
三、主要參考文獻及外文資料
[1]?梁庚煌.輸送機械手冊第2?冊[M].北京:化學工業(yè)出版社,2008.
[2]?劉朝儒,彭福蔭,高政.機械制圖[M].北京:高等教育出版社,2009.
[3]?朱張校主編.工程材料[M].北京:清華大學出版社,2010.
[4]?張建民等著.機電一體化系統(tǒng)設計.北京:北京理工大學出版社,2005
[5]?趙如福.金屬機械加工工藝人員手冊[M].上海:上??茖W技術出版公司,2010.6.
[6]?戴?曙.金屬切削機床設計[M].北京:機械工業(yè)出版社,2010.
[7]?薛源順.機床夾具手冊[M].北京:機械工業(yè)出版社,2011.
[8]?孫桓.機械原理[M].北京:高等教育出版社,2011.
[9]?成大先.機械設計手冊?第四卷[M].北京:化學工業(yè)出版社,2008.6.
[10]?劉家仁.機械設計常用元件手冊[M].北京:機械工業(yè)出版社,2009.????
[11]濮良貴,紀名剛.機械設計?第八版[M].北京:?高等教育出版社,2006.
[12]孫桓,陳作模,葛文杰.機械原理?第七版[M]北京:高等教育出版社,2006.5.
?
?
研究方案(研究目的、內容、方法、預期成果、條件保障等)
一、研究目的
通過調研目前市場上的各種螺旋輸送機,設計出性價比更高更合理的螺旋輸送機,更好的解決目前運輸系統(tǒng)中的問題,更好促進機械運輸業(yè)的發(fā)展,進而促進國家經濟的發(fā)展。
?
二、研究內容
參照一下步驟進行設計:
1、參閱相關設計書籍
2、主要參數(shù)的合理安排;
3、各重要機構的創(chuàng)新設計與合理計算;
4、嚴格參照設計要求;
5、二維草圖繪制以及三位實體造型;
6、螺旋輸送機的總裝配圖以及各主要零部件的圖形繪制;
7、課題設計說明書的詳細介紹;
?
三、研究方法
1、研究螺旋輸送機的結構,了解其工作原理和特點以及其存在的不足點。
2、調研和參觀實習,查閱和收集相關資料,了解此課題的研究動態(tài)。
3、研究螺旋輸送機各構成部分,對原始數(shù)據(jù)進行設計計算,并選擇最佳設計方案及設計結構。
4、根據(jù)設計要求及計算結果,詳定重要機構主要零部件的尺寸,及繪制螺旋輸送機的總裝配圖及其主要零件圖。
?
四、研究的預期成果??????
????根據(jù)選題的參數(shù),以及各設計要求,完成螺旋輸送機的樣機設計,結合當前螺旋輸送機存在的某些嚴重缺點,參照各參考文獻,發(fā)揮創(chuàng)新思維,以改善其功能,而最主要是通過該課題的研究與設計以解決大耗能、多污染,以及工作效率較低的問題,更好的滿足市場的需要。
?
?
進程計劃(各研究環(huán)節(jié)的時間安排、實施進度、完成程度等)
?
???起止日期
主要工作內容
完成程度
??2013.03.01~2013.03.09
收集資料
已完成
??2013.03.10~2013.03.19
總體方案論證、選擇、整體結構的初步設計
正在進行中
??2013.03.20~2013.03.29
根據(jù)所給技術參數(shù)進行了設計計算
正在進行中
?
??2013.03.30~2013.04.01
中期考核
?
??2013.04.02~2013.04.15
繪制總圖及零件圖等
正在進行中
??2013.04.16~2013.04.30
編制典型零件的加工工藝規(guī)程卡片
未完成
??2013.05.01~2013.05.13
整理完成設計計算說明書
未完成
??2012.05.14~2012.05.26
答辯與修改定稿
未完成
Vff?
論證小組意見
?
??????????????????????????????組長簽名:
????????????????????????????????????????????????20????年???月???日
專業(yè)委員會意見
?
?
??????????????????????????????專業(yè)委員會主任簽名:
???????????????????????????????????????????????20???年???月???日
?
湖南農業(yè)大學全日制普通本科生畢業(yè)論文(設計)
開題論證記錄
學 院: 工學院 記錄人:
學生姓名
學 號
年級專業(yè)及班級
指導教師姓名
指導教師職稱
副教授
論文(設計)題目
煤炭螺旋輸送機的設計
論證小組質疑:
學生回答簡要記錄:
論證小組
成員簽名
論證地點: 論證日期:20 年 月 日
目 錄
摘要………………………………………………………………………………1
關鍵詞…………………………………………………………………………1
1前言……………………………………………………………………………2
1.1輸送機的歷史和發(fā)展趨勢…………………………………………………2
1.2螺旋輸送機簡介……………………………………………………………3
1.3螺旋輸送機主要特點………………………………………………………3
1.4螺旋輸送機的結構特點……………………………………………………3
1.5螺旋輸送機的運行原理……………………………………………………3
2 擬定設計方案…………………………………………………………………4
2.1傳動方案的擬定……………………………………………………………4
2.2工作參數(shù)的擬定……………………………………………………………4
3電動機的選擇…………………………………………………………………5
3.1類型和結構形式的選擇……………………………………………………5
3.2電動機功率的確定…………………………………………………………5
3.2.1計算電動機所需功率………………………………………………5 3.2.2確定電動機轉速…………………………………………………………5
4V帶的設計…………………………………………………………………… 6
4.1確定計算功率………………………………………………………………6
4.2V帶的帶型確定與帶速的驗算…………………………………………… 6
4.2.1確定帶輪的基準直徑……………………………………………………6
4.2.2驗算V帶速度……………………………………………………………6
4.2.3確定中心距a,并選擇V帶的基準長度Ld……………………………6
4.2.4驗算小帶輪上的包角a1…………………………………………………7
4.2.5確定帶的根數(shù)Z………………………………………………………… 7
4.2.6確定帶的初拉力F0與壓軸力FP…………………………………………7
4.3V帶輪的設計……………………………………………………………… 8
4.3.1V帶輪的材料…………………………………………………………… 8
4.3.2V帶輪的結構尺寸……………………………………………………… 8
5確定傳動裝置的總傳動比和分配傳動比…………………………………………… 9
5.1計算傳動裝置的動力參數(shù)………………………………………………………… 9
6減速器的設計與計算………………………………………………………………10
6.1減速器結構設計……………………………………………………………10
6.1.1機體結構…………………………………………………………………10
6.1.2鑄鐵減速器箱體主要結構尺寸…………………………………………10
6.1.3減速器中各軸運動及動力參數(shù)計算…………………………………10
6.1.4齒輪傳動的設計與計算……………………………………………… 10
6.1.5軸的設計計算…………………………………………………………18
6.1.6箱體內鍵聯(lián)接的選擇………………………………………………… 23
6.1.7減速器附件的選擇…………………………………………………… 24
7螺旋輸送機的設計………………………………………………………… 24
7.1螺旋輸送機的選型……………………………………………………… 24
7.2螺旋輸送部件的設計…………………………………………………… 25
7.2.1螺旋輸送機的主要參數(shù)計算………………………………………… 26
7.2.2螺旋直徑的確定…………………………………………………………26
7.2.3螺距與螺旋軸轉速的確定…………………………………………… 26
7.2.4實體型螺旋葉片的展開尺寸………………………………………… 29
7.3螺旋輸送機機體的設計………………………………………………… 29
7.3.1機體主要部件的介紹……………………………………………………30
7.3.2料槽的確定…………………………………………………………… 31
7.4進出料口的設計………………………………………………………… 32
7.5輸送缸體支架的設計………………………………………………………………33 7.6軸承的密封…………………………………………………………………………34
8螺旋輸送機機體的安裝條件、使用及維護……………………………… 34
8.1螺旋輸送機的安裝條件………………………………………………… 34
8.2螺旋輸送機的使用及維護……………………………………………… 35
9結論………………………………………………………………………… 36
參考文獻……………………………………………………………………… 36
致謝………………………………………………………………………… 37
附錄…………………………………………………………………………… 37
畢業(yè)設計(論文)外文翻譯
題目 螺旋輸送式洗米機的設計
專 業(yè) 名 稱 機械設計制造及其自動化
班 級 學 號 088105401
學 生 姓 名 呂西婭
指 導 教 師 賀紅林
填 表 日 期 年 月 日
外文資料
Abstract
A screw conveyor composed of a plurality of modules mated end to end and of identical integrally molded construction. Each module is molded of a suitable plastic material and has integrally formed therewith a cylindrical body, a coaxially disposed tube within the body, and a web helically disposed between the coaxial tube and the cylindrical body. The module includes ends mateable with corresponding ends of like modules to provide a screw conveyor of intended length and which is rotatable as a single unitary structure. Each module may have a sheave integrally molded thereon for mating with a V-belt drive. Alternatively, the modules can be of open form each having a helical web molded on a central tube preferably having a non-circular and adapted for end to end mating with like modules to provide a screw conveyor of desired length. This open type of screw conveyor can be readily retrofitted to systems having conventional metal conveyor screws.
This invention relates to screw conveyors and more 10 particularly to an integrally constructed modular screw conveyor molded of a plastic material.
BACKGROUND OF THE INVENTION
Screw conveyors are well known for the transport of bulk material. Such conveyors generally include a helical screw disposed within housing, often of trough like form, and rotatable about its longitudinal axis to cause propulsion of bulk material along the length of the screw. Conveyors of known construction are usually fabricated of metal and are constructed to an intended finished size to provide a conveyor of intended length. Screw conveyors have also been constructed of modular or segmented form to provide sections which can be assembled into a complete conveyor of a desired length. Examples of segmented or modular conveyors are shown in U.S.Pat.Nos.349,233; 525,194; 1,867,573; 2,394,163; 2,492,915 and 3,178,210.
SUMMARY OF THE INVENTION
The present invention provides a screw conveyor composed of identical end to end mated modules, each module being of integral plastic molded construction. Each module includes a body of cylindrical configuration, a tube coaxially disposed within the cylindrical body and having an opening extending there through, with a web helically disposed between the coaxial tube and cylindrical body. The ends of the body and coaxial tube are configured to seemingly engage like ends of mated modules, and the respective ends of the helical web include surfaces mateable with corresponding surfaces of the modules. The modules are axially mated to form a conveyor of desired length, the mated modules being retained in engagement by a tensile member such as a rod disposed through the aligned openings of the coaxial tubes and operative to provide an intended compressive force on the engaged modules. Alternatively the modules can be secured in engagement by other means such as flanges on the ends of the body. The module body, coaxial tube, and helical web are integrally molded of a suitable plastic material, typically by an injection molding process. Each module may include a sheave integrally formed with the body which is composed of a plurality of spaced segments to define a V-groove configured to mate with a V-belt of an exterior drive. Alternatively sprocket teeth may be integrally formed with the module body to mate with a chain drive or other driving means can be employed.
In the embodiment described above, the helical web is integrally formed within a surrounding tube which provides a self-enclosure for the helical screw. The conveyor of the present invention can also be embodied in open form in which the module comprises a central tube preferably having a non-circular opening, about which the helical web is integrally molded. The ends of the central tube and ends of the web are mateable with the ends of the modules to provide a conveyor of desired length.
The modules are retained in compressive engagement by a tensile member such as a shaft of non- circular cross-section extending through the aligned non-circular openings of the central tubes, the rod also serving as a tensional drive shaft for the mated modules. This open type of screw conveyor driven by a central shaft is adapted to be readily retrofitted to existing conveyor systems which presently employ conventional metal conveyor screws.
The molded plastic conveyor of this invention offers major benefits over screw conveyors of conventional construction. The assembled modules offer smooth effectively continuous surfaces throughout the length of the conveyor with no hardware or other obstructions along the conveying surfaces. The novel conveyor is easily cleaned and can be molded of a variety of materials compatible with and suitable for particular operational purposes. The conveyor is not subject to rust or corrosion, as with many conveyors, and is of much less weight than a metal conveyor of the same size. The modular construction allows a single unitary module to be manufactured and stocked for assembly as necessary to achieve conveyors of different lengths. The modules can be easily shipped to an installation site and assembled on site for use. The conveyor can also be readily disassembled into its component modules such as for cleaning, shipping or repair.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.1 is a pictorial view of a screw conveyor module embodying the invention; FIG.2 is an end view of the module of FIG.1; FIG.3 is a sectional view taken along lines 3—3 of FIG.2; FIG.4 is a pictorial view of an embodiment similar to that of FIG.1 and including an integrally molded sheave thereon ;FIG.5 is an end view of the module of FIG.4; FIG.6 is a sectional view taken along lines 6—6 of FIG.5; FIG.7 is a sectional side view of a screw conveyor embodying the invention and composed of the modules of FIGS.1-3; FIG.8 is a cutaway side view of a module having alternative mounting means; FIG. 9 is a sectional elevation view of a further embodiment of a screw conveyor module of the invention FIG. 10 is an end view of the module of FIG. 9 FIG.11 is a side view of a screw conveyor embodying the invention and composed of the modules of FIG.9 and 10; and FIG.12 is a pictorial view of a further embodiment of a screw conveyor module of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIGS. 1-3 of the drawing, there is shown an integrally molded module which is mated with like modules to form a screw conveyor of intended length. The module is molded of a suitable plastic material such as polyethylene polypropylene or polyurethane and has integrally formed therewith all essential constituents of the screw conveyor. The module includes a body of tubular configuration having on the ends thereof circular grooves 12 and 16, respectively, for accommodation of an O-ring seal between mated modules. A tube 16 is coaxially disposed within body 10 and having an opening 18 extending there through, with a web 20 helically disposed between the inner surface of body 10 and outer surface of tube 16. The tube 16 includes on the respective ends thereof circular grooves 5 and 17 for accommodation of an O-ring seal. The web 20 is slightly less than one helical pitch length terminating in respective ends 22 and 24 which include radically parallel surfaces 26 adapted to confront corresponding surfaces of like modules. Thus, the surface 26 of helix end 10 22 is adapted to confront the oppositely facing edge of end 24 of an adjacent module. The web ends extend outward of the confronting ends of body 10 typically by approximately 1/2 the wall thickness of the web, as illustrated. By having the length of the helical web 15 slightly less than the helical pitch it is possible to injection mold the module by conventional molding techniques since as seen from FIG. 2 the two halves of an injection mold can open axially of the module which, because its helical length is slightly less than one helical pitch, presents no undercuts to the mold halves. Typically, the web length is about one percent less than the pitch length to provide sufficient clearance for mold tooling.
An embodiment similar to that of FIGS. 1-3 is shown in FIGS. 4-6 and includes a sheave integrally molded with the conveyor module. The sheave is provided around the body centrally disposed between the respective ends of the body, the sheave being composed of alternating segments. A first array of segments is disposed around the body in spaced circumferential arrangement. A second array of segments is axially spaced from the segments and is circumferentially disposed about body in spaced position staggered from the position of the segments , as illustrated. The confronting surfaces and of respective segments and define a V-groove, best seen in FIG.6, configured to mate with a V-belt of an exterior drive.The module is otherwise the same as described above with respect to FIGS. 1-3. The staggered arrangement of the segments and allow injection molding by conventional injection molding techniques since the staggered arrangement as seen from FIGS .4-5 permits the mold halves to open axially of the module and presents no undercuts to the mmold halves.
The module of FIGS. 1-3 is axially mated with like modules, as shown in FIG. 7, to form a conveyor of desired length. Each of the modules is aligned with the ends of adjacent bodies in engagement with an interposed O-ring, and with the ends of adjacent tubes in engagement with an interposed O-ring. The helical webs have their edges confronting to provide an effectively continuous helical screw disposed within the continuous tubular body formed by the mated modules. Since the web is slightly less than one helical pitch length, small spaces exist between the confronting web ends of mated modules. Typically, the gap between confronting web ends is about 0.1 inch for a web of eight inch diameter. The small space between the confronting ends of the helical web are of little consequence to the ability of the assembled screw to convey most products.
The small spaces may be filled in with material which is the same as or compatible with that of the module. For example, molded strip of plastic material can be inserted into the small spaces between web ends and fused therein, such as by hot gas welding, to product a helical web having fully continuous surfaces. The elimination of the small gaps is useful in some applications such as where santitary conditions require. For most converying purposes, the small spaces are not of any consequence.
The mated modules are maintained in engagement by a tensile member disposed within the openings of tubes. This member typically is a metal rod 41 having threaded ends 42 and fasteners 44 which are tightened to provide an intended compressive force on the engaged modules. Alternatively, the tensile memmer can be a wire, plastic, or other rope disposed within the openings 18 of tubes 16 and tensioned by appropriate fasteners on the resprective ends of the rope. In cases where the conveyor is subject to changes in temperature,it would be preferable to have a tensile member which allows for expansion and contraction of the conveyor while maintaining the axial compressive force on the mated modules. The tensile member should be of a material having thermal expansion and contraction characteristics in relation to those of the modules to maintain a compressive load on the mated modules even during temperature cycling.
The modules can alternatively be secured together by means other than a tensile member. One such alternative is illustrated in FIG. 8 in which the body 10 includes on each end thereof an integral flange 45 having openings 47 disposed about the circumference of the flange and through which fasteners are insert able for securing mated ends together.
The mated modules may be supported for rotation on rollers 46. Typically, an array of three circumferentially spaced rollers is provided near each end of the conveyor body. Additional rollers can be provided as necessary, depending upon the length of the particular conveyor. Axial positioning of the conveyor body is maintained by horizontally disposed rollers 48 at each end of the body, these rollers being circunferentially spaced about the periphery of the body. A flange 50 is attached to the end modules of the conveyor and includes a circular surface 52 which is cooperative with the rollers 48 to maintain the axial position of the rot able body. A slip can be machined or otherwise formed in the outer end of the outmoste module. In the illustrated embodiment, the slip seal is in the form of an annular groove 54 into which an end of a feed tube 56 is inserted, and with respect to which the conveyor body is rotatable. The feed tube 56 is typically connected to a hopper 58 into which a product is fed(as shown by the arrow) for conveyance.
The drive assembly 60 includes sheaves 62 carried by and rotatable with a shaft 64 which is supported on bearing blocks 66 and which is driven by a motor ( not shown ) . The shaft 64 is spaced from and parallel to the conveyor body, and each sheave 62 may be in association with a respective conveyor module. V-belts 68 couple the drive sheaves 62 to the conveyor modules and by which power is transmitted to the conveyor body for rotation thereof. In the illustrated embodiment, each of the modules is driven by an associated conveyor belt coupled to the drive assembly. All of the conveyor modules need not to be driven, and the driven number will be determined in accordance with the motive force necessary to rotate the conveyor for particular application.
If the modules of FIGS. 4-6 are employed, the sheaves 28 are operative to engage the V-belts 68 for driving the conveyor. It is appreciated that the conveyor can be driven by other than V-belts. For example, chain sprockets can be formed on or attached to the modules for cooperation with a chain drive.
Another embodiment of the invention is shown in FIGS. 9 and 10 and includes a screw convveyor module having a central tube 70 of cylindrical exterior form, 5 with a non-circular opening there through and with a web 72 helically disposed about the central tube. The helical web is slightly less in length than one helical pitch length, as described, and terminates ai edges 74 and 76, these edges being adapted to confront corresponding edges of adjacent modules. The openging 78 through the central tube is of non-circular cross-section at end portions 80 and tapering is slight and is provided as “draft angle” to facilitate removal of the 15 module from axially separble molds. The opening is configured to mate with a non-circular shaft which serves as a tensile member to lock the modules into axial engagement and which also serves as a positive drive shaft for rotation of the conveyor. In the embodiment of FIGS. 9 and 10, the opening is illustrated as hexagonal, although other noncircular shaped openings can be provided in tube for use with a correspondingly shaped openings can be provided in tube for use with a correspondingly shapes shaft to prevent rotation of the engaged modules relative to the shaft.
A screw conveyor composed of the modules of FIGS. 9 and 10 is shown in FIG. 11. Each of the modules is aligned with the ends of adjacent central tubes 70 in engagement with an interposed O-ring 84, and with the helical webs 72 having their ends confronting to 35 provide an effectibely continuous helical screw. A shaft 86 is fitted through the openings 80 through the tubes 70 and is secured by end fasteners, such as nuts 88 threaded onto threaded ends of shaft 86, which are tightened to provide an intended compressive force on the interconnected modules, as described above. This embodiment of FIG .11 can be employed to retrofit existing metal screw conveyors without material change to the drive system.
中文翻譯
摘要
螺旋輸送機由多個首尾相連的組件和同一的整體塑造構件組成。每一個組件由一種合適的塑性材料塑造,它有與之相對的固有成形加工圓柱體,其中有同軸的管子,在同軸管子和圓柱體之間有螺旋體。首尾相配合的組件使螺旋輸送機成為具有合適長度和旋轉的整體。每個模塊上面會有一槽輪以便用于V型帶驅動。或者,由焊接在更適宜于首尾相配合的非圓形中心管上的敞面式螺旋卷筒使螺旋輸送機具有適宜的長度。這種開放式螺旋輸送機很容易使具有傳統(tǒng)金屬制螺旋體系統(tǒng)改裝翻新。
標準螺旋輸送機
和螺旋輸送機相關的發(fā)明還有10多種專門的由塑性材料制成的螺旋輸送組件。
發(fā)明背景
眾所周知,螺旋輸送機用于輸送散塊物體。像這種在外罩內含有螺旋體的螺旋輸送機通常通過縱向軸的螺旋使散塊物體沿螺旋體向前傳輸。通常輸送機的結構由金屬構造它們有合適的長度使輸送機具有適當?shù)拈L度。螺旋輸送機也可以由模塊塊或者部件構成組件從而制成具有滿意長度的輸送機。在U.S.Pat.Nos349,233; 525,194;1,867,573; 2,394,163; 2,492,915 and 3,178,210中可以看到這樣結構的螺旋輸送機。
發(fā)明概要
該發(fā)明使螺旋輸送機有了同一的首尾相配合的單元,每一單元都是塑性構造件。每一單元包括一個圓柱型輪廓其中有同軸的管子開放型向外延伸,在它們之間是螺旋體。在圓柱體和同軸管的末端被配合成一體,螺旋體各自的尾部包括配合的表面。模組軸向連接形成具有合適長度的螺旋輸送機,相配合的組件通過成直線的同軸管子約束以及提供合適壓力成為一整體?;蛘撸M件通過其他方式例如機械凸緣約束在一起。組件,同軸管和螺旋部分都由合適塑性材料塑造而成,尤其通過噴射摸塑法制造。每個組件含有一個帶V型槽的槽輪以便配合外部V型帶驅動?;蛘?,組件帶有鏈齒以便使用鏈條驅動,也可以通過其他方式驅動。
對于上述結構體,螺旋部分通過螺旋管形成螺旋。本發(fā)明的輸送部分同樣可以通過中心管采用非圓開放形式,這些螺旋部分鑄造而成。中心管和螺旋套首尾配合使輸送機具有合適長度。組件通過例如非圓形橫截面的延伸軸約束成型,這個桿同樣可以為組件從當驅動軸。由中心軸驅動的開放型螺旋輸送機適應于現(xiàn)有傳統(tǒng)螺旋輸送機系統(tǒng)。
這種螺旋輸送機明顯優(yōu)于具有傳統(tǒng)結構的螺旋輸送機。被裝配的模組在運送機的長度各處沿著輸送表面以沒有硬件或其他的障礙提供光滑的有效連續(xù)的表面。新型的運送機很容易被清理,而且能相容多種材料和進行特殊的操作目的。和很多輸送機一樣該輸送機不能生銹和受腐蝕,它的重量比相同規(guī)格的要輕。組件結構允許一個單一的統(tǒng)一模式制造和安裝成組件以實現(xiàn)輸送不同的長度。該模塊可以方便地被輸送到安裝現(xiàn)場組裝使用。傳送帶也可以很容易分解成它的組成模塊以便清潔,搬運,或者修理。
圖形說明
從以下結合所附圖紙的詳細說明中我們將會更加充分地理解該發(fā)明,其中:圖1是體現(xiàn)發(fā)明的螺旋模塊示意圖;圖2是圖1所示模塊的端面圖;圖3是圖2沿3-3的橫截面圖;圖4是類似圖1的具體示意圖,還包括一個整體成型輪;圖5是圖4模型的端面;圖6是圖5沿6-6線的截面;圖7是一個體現(xiàn)由圖1-3所示模型組成的螺旋輸送機的側面斷面;圖8是擁有不同安裝方式的模塊的剖側圖;圖9是進一步體現(xiàn)螺旋輸送機模塊發(fā)明的局部正視圖;圖10是圖9所示圖模型的端面;圖11是圖9和圖10組成體現(xiàn)螺旋輸送機發(fā)明的一個側面圖;圖12是這種發(fā)明的螺旋模塊的進一步體現(xiàn)。
發(fā)明的詳細說明
圖1-3可以顯示整體成型模塊是由配合的模塊組成實現(xiàn)螺旋輸送機的合適長度。該模塊是由合適的成型塑料材料,如聚乙烯,聚丙烯或聚氨酯等制作,并已整體形成需要的所有基本成分的螺旋輸送機。該模塊包括一個具有管狀結構的兩端有圓形凹槽12和16的機構,這種O形圈密封單元分別用于模塊之間配合的。在柱體10內有同軸的管子16,還有開放型延伸的管18,在柱體10內表面和管子16外表面之間有20螺旋部分。管子16 包括在各自的有圓形槽5和17的O形圈密封。該螺旋20的長度略小于一個螺距,它終止于包括平行表面26的22和24。因此,螺旋末端10和22的表面26用于配合相鄰模塊末端24的邊緣。如圖所示,該螺旋末端延伸至構件10的1/2壁厚。螺旋15的長度略小于螺距使模塊可以按常規(guī)方法組裝,如圖2所示,兩半的注塑模具可以打開軸向的模塊,因為它的螺旋長度略少于1螺旋間距。一般來說,螺旋長度比軌跡長度少1以便給模具提供充足的空間。
類似圖1-3所示圖4-6包括一體成型輪的傳送帶模塊示意。該輪是各地的機構提供集中處置各自的兩端之間的機構,滑輪組成的交替部分。第一部分是一系列的處置機構在間距圓周上排列。如圖所示,第二部分同軸空間布置,并且沿環(huán)形間隔錯開。在圖6中很容易可以看出,對立面、各自部分和V型凹槽配合以便外部V帶驅動。該模塊和圖1-3所示描述一樣。允許使用常規(guī)注塑成型注塑技術,因此模塊采用交錯安排,如圖4-5所示允許多半組合成開放型同軸部件。
模塊圖1-3是軸向交配與像模塊,而如圖7所示,形成一個傳送帶的長度。每個單元是符合兩端相鄰的機構參與了插嘴O形圈,并與兩端相鄰管參與了插嘴O形圈。螺旋部分有其邊緣面對提供有效持續(xù)長度。螺旋處置的連續(xù)管機構形成的交配模塊。由于螺旋部分是略少于一螺旋間距長度,小空間之間的兩端交配模塊。通常情況下,之間的差距是每8英寸直徑差0.1英寸。螺旋相對末端之間的小空間不具備輸送大部分物品的能力。
這小小的空間可以填充和模塊相同或者兼容的材料。例如,塑性材料制作的模塊螺旋末端之間可以通過氣體保護焊焊接以形成螺旋連續(xù)表面。在一些要求下例如衛(wèi)士要求,這些小的排泄間隔是很有用的。對于大部分的輸送目的來說,這些小的空間不是沒有任何作用的。
配合的模塊通過開口管子內部的拉伸部件保持。這通常是一個金屬桿41兩端有螺紋緊固件42和44來提供一個預加強壓縮力來組裝模塊。另外,在管16內的開口18管內的拉伸部件可以是鋼絲線,塑料,后者其他管。這種情況輸送可以適應變化的溫度,它有一個允許膨脹和收縮輸送的拉伸部件,同時輸送的結構可以為配合提供軸向壓力。拉伸部件的熱膨脹和收縮特性應和模塊材料相關以保持配合模塊即使在溫度循環(huán)下也呢過承受壓載荷。
通過拉伸部件這些模塊可以保持在一起。這樣的一個辦法如圖8所示,其中包括機構10的兩端有一個不可分割的法蘭45和緊固件47是通過插入能夠緊密配合在一起。
配合的模塊可以支持旋轉的輥46。通常情況下,一系列的三輥環(huán)間隔是每端附近的輸送機構。附加輥可提供必要的,這取決于輸送距離的長短。通過輸送體末端的滾筒48輸送體的軸向位置得到保持,這些滾筒被環(huán)形間隔在輸送體的外部。法蘭50被連接到傳送帶末端模塊,其中包括一個與滾筒48配合的圓形表面52以保證軸向位置。滑閥可以被機加工或者成型于外部模塊的外部。在描述結構體中,滑閥的形式是一個環(huán)形槽54結束于管子56,這樣使得螺旋體旋轉。進料管56通常是連接到一個漏斗58以便進料(如箭頭所示)從而用于運輸。
驅動器60包括可攜帶滑輪62和可旋轉的軸64,其支持軸承為66,而且被電機驅動(未顯示)。軸64和輸送機構體平行,而且每滑輪62和各自傳送帶模塊相連。V型帶68與驅動器62相配至傳送帶模塊而且通過動力傳遞至輸送體用于旋轉。在描述的裝置中,每一個模塊是由相關的輸送帶驅動。并不是所有傳送帶模塊都需要驅動,而驅動的數(shù)量將取決于應用特殊要求的驅動動力。
如果圖 4-6 所示模塊被使用,則滑輪28用于確保V型帶68驅動輸送。這種輸送可以被除V型帶以外的其他輸送帶驅動。例如,鏈鏈輪可配合模塊以便利用鏈驅動。
另一個體現(xiàn)了結構發(fā)明所示如圖9和10,并包括螺旋輸送機模塊有一個中心管70圓柱形外觀形式,非圓形開放形式5和72形成螺旋型中心管。螺旋部分在長度上略小于一個螺旋間距,如描述所示,并終止在74和76的邊緣,這些邊緣適應于相應邊緣相鄰模塊。通過中央管的非圓截面部分78位于80末端并在中央部分逐漸趨于非圓截面82。這是輕微錐形提供“拔模角”以方便拆除模塊的軸向可分離鑄模。這種開口配合非圓軸以充當拉伸件以鎖定模塊軸向接觸,同時為螺旋輸送擔任主驅動軸。在圖9和10所示中,開六角形口還有其他非圓形狀的開口可提供管使用以防止輪換從事模塊相對軸。
由模塊9和10