組合專機(jī)-ZH1105柴油機(jī)氣缸體三面粗鏜組合機(jī)床設(shè)計(jì)(夾具設(shè)計(jì))
組合專機(jī)-ZH1105柴油機(jī)氣缸體三面粗鏜組合機(jī)床設(shè)計(jì)(夾具設(shè)計(jì)),組合,專機(jī),zh1105,柴油機(jī),缸體,三面粗鏜,機(jī)床,設(shè)計(jì),夾具
外文翻譯
專 業(yè) 機(jī)械設(shè)計(jì)制造及自動(dòng)化
學(xué) 生 姓 名 孫 道 德
班 級(jí) BMZ機(jī)制031
學(xué) 號(hào) 0361440120
指 導(dǎo) 教 師 劉 必 榮
附 件1:
機(jī) 床 基 礎(chǔ)
范云漲 著
孫道德 譯
摘 要: 在許多情況下初步加工成型的產(chǎn)品必須在尺寸和表面光潔度方面經(jīng)過(guò)進(jìn)一步的加工以滿足設(shè)計(jì)要求。為了滿足這么高要求的尺寸,去除少量的材料是必需的。機(jī)床通常用于執(zhí)行這樣的操作。
關(guān)鍵字:機(jī)床;車(chē)床
機(jī)床介紹:機(jī)床加工作為產(chǎn)生形狀的一種方法是所有制造過(guò)程中最普遍使用的并且是最重要的方法。機(jī)床加工是一種成型的過(guò)程通過(guò)電機(jī)驅(qū)動(dòng),材料以切屑的形式被去除。
大多數(shù)的機(jī)床加工是通過(guò)既支承工件又支承刀具的裝備來(lái)完成。盡管在某些場(chǎng)合,工件無(wú)支承情況下,使用移動(dòng)式裝備來(lái)實(shí)現(xiàn)加工。
小批量生產(chǎn)低費(fèi)用。機(jī)床加工在制造過(guò)程中有兩個(gè)方面。對(duì)于鑄造、鍛造和壓力加工,每一個(gè)要生產(chǎn)的具體工件形狀,即使是一個(gè)零件,幾乎都要花費(fèi)高額的加工費(fèi)用。靠焊接來(lái)產(chǎn)生的結(jié)構(gòu)形狀,在很大程度上取決于有效的原材料的形狀。一般來(lái)說(shuō),通過(guò)利用貴重設(shè)備而又無(wú)需特種加工條件下,幾乎可以從任何種類(lèi)原材料開(kāi)始,借助機(jī)床加工把原材料加工成任意所要求的結(jié)構(gòu)形狀,只要外部尺寸足夠大,那都是可能的。因此對(duì)于生產(chǎn)一個(gè)零件,通常選擇機(jī)床加工甚至于當(dāng)零件結(jié)構(gòu)及要生產(chǎn)的批量大小上按理都適于用鑄造、鍛造或壓力加工來(lái)生產(chǎn)的。
高的精度和良好表面光潔度。機(jī)械加工的第二方面用途是建立在高精度和可能的表面光潔度基礎(chǔ)上。許多零件,如果用別的其他方法來(lái)生產(chǎn)屬大批量生產(chǎn)的話,那么在機(jī)械加工中則是屬低公差且又能滿足要求的小批量生產(chǎn)了。另方面,許多零件靠較粗的生產(chǎn)加工工藝提供其一般表面形狀,而僅僅是在需要高精度的且選擇過(guò)的表面上才進(jìn)行機(jī)械加工。例如內(nèi)螺紋,除了機(jī)械加工之外,幾乎沒(méi)有別的加工方法能進(jìn)行加工。再如已鍛工件上的小孔加工,也是在被鍛后進(jìn)行機(jī)械加工才完成的。
在美國(guó)材料切削業(yè)是一個(gè)很大的產(chǎn)業(yè)——費(fèi)用每年超過(guò)36×109美元,包括材料,勞動(dòng)力,管理費(fèi),機(jī)床裝運(yùn)費(fèi)等所花的費(fèi)用。由于60%機(jī)械和工業(yè)工程以及技術(shù)等級(jí)評(píng)定工作都跟機(jī)床加工工業(yè)有某些關(guān)系,或者通過(guò)買(mǎi)賣(mài)、設(shè)計(jì)或者機(jī)器車(chē)間中操作或在有關(guān)工業(yè)企業(yè)中加工,因此,對(duì)于工程專業(yè)學(xué)生來(lái)說(shuō),在他的學(xué)習(xí)計(jì)劃中集中一段時(shí)間去學(xué)習(xí)研究材料切削和機(jī)床是個(gè)明智的做法。
機(jī)床為通過(guò)切削工具使工件成型以達(dá)到所需的尺寸提供了方法。機(jī)床通過(guò)其基礎(chǔ)構(gòu)件的功能作用,以控制相互關(guān)系方式支持、夾緊工具和工件,現(xiàn)將基本結(jié)構(gòu)部件列舉如下:
a)床身,構(gòu)架或機(jī)架。這是一個(gè)主要部件,該部件為主軸、拖板箱等提供一個(gè)基礎(chǔ)和連接中介,在負(fù)載作用下,它必須使變形和振動(dòng)保持最小。
b)拖板箱和導(dǎo)軌。機(jī)床部件(如拖板箱)的移動(dòng),通常是在精確的導(dǎo)軌面約束下靠直線運(yùn)動(dòng)來(lái)實(shí)現(xiàn)。
c)主軸和軸承。角位移是圍繞一個(gè)旋轉(zhuǎn)軸線發(fā)生的,該軸線的位置必須在機(jī)床中極端精確的限度內(nèi)保持恒定,而且是靠精密的主軸和軸承來(lái)提供保證。
d)動(dòng)力裝置。電動(dòng)機(jī)是為機(jī)床所普遍采用的動(dòng)力裝置。通過(guò)對(duì)各個(gè)電機(jī)的合適定位,使皮帶和齒輪傳動(dòng)裝置減少到最少。
e)傳動(dòng)連桿機(jī)構(gòu)。連桿機(jī)構(gòu)是個(gè)通用術(shù)語(yǔ),用來(lái)代表機(jī)械、液壓、氣動(dòng)或電動(dòng)機(jī)構(gòu)的,這些機(jī)構(gòu)與確定的角位移和線性位移相關(guān)聯(lián)。
加工工藝主要有兩個(gè)組成部分:
a)粗加工。粗加工,金屬切除率高,因而往往切削力也大,但所要求的尺寸精度低。
b)精加工。精加工,金屬切除率低,因而往往切削力也小,但所要求的尺寸精度和表面光潔度高。
由此可見(jiàn),靜載荷和動(dòng)載荷,例如由不平衡的砂輪引起的動(dòng)載荷,在精加工中比粗加工中有著更為重要的意義。任何加工過(guò)程所獲得的精度通常將受到由于力的作用引起發(fā)生的變形量的影響。
機(jī)床座架一般是用鑄鐵制造的,然而有些也可能用鑄鋼或中碳鋼來(lái)制造。選用鑄鐵是因?yàn)樗阋耍瑒傂院?,受壓?qiáng)度高,并且有減弱機(jī)床操作中產(chǎn)生的振動(dòng)的能力。為了避免床身鑄件碩大斷面,精心地設(shè)計(jì)筋條構(gòu)架以便提供最大的抗彎曲和抗扭轉(zhuǎn)應(yīng)力的能力。筋條的兩種基本類(lèi)型是:箱型結(jié)構(gòu)和片狀斜支撐式。箱型結(jié)構(gòu)便于生產(chǎn),箱壁上有孔口便于使型芯定位和取出。片狀斜支撐筋條有較大的抗扭剛度亦能使截面上的碎屑掉落。它常常用于車(chē)床床身。機(jī)床的拖板箱和導(dǎo)軌是支撐和引導(dǎo)彼此相對(duì)運(yùn)動(dòng)的零部件,通常是改變刀具相對(duì)于工件的位置。運(yùn)動(dòng)一般以直線運(yùn)動(dòng)的方式,但也有時(shí)是轉(zhuǎn)動(dòng),例如對(duì)應(yīng)于工件的螺紋上的螺旋角方向而使萬(wàn)能螺紋磨床上的砂輪頭轉(zhuǎn)動(dòng)一個(gè)角度。拖板箱構(gòu)件的基本的幾何結(jié)構(gòu)形狀是平的、V型槽形、燕尾槽形和圓柱形的。這些構(gòu)件可根據(jù)用途,以各種方法分別使用或結(jié)合使用。導(dǎo)軌的特性如下:
(a)運(yùn)動(dòng)精確。于此拖板是要按直線移動(dòng)的,這直線必定是由兩個(gè)相互垂直的平面形成而且拖板必定不存在轉(zhuǎn)動(dòng)。機(jī)床導(dǎo)軌的直線度公差是每米0~0.02毫米,在水平面上這個(gè)公差可以進(jìn)行處理,以使得到凸形表面,這樣就抵消導(dǎo)軌下凹的作用。
(b)調(diào)整手段。為了便于裝配、維護(hù)精度和在發(fā)生磨損后便于限制移動(dòng)構(gòu)件之間的“竄動(dòng)”,有時(shí)在拖板內(nèi)裝入扁條,這扁條被叫做“鋃條”。通常該鋃條用穿過(guò)長(zhǎng)孔的沉頭螺釘支住,而用平頭螺釘調(diào)整好后用鎖緊螺母上緊。
(c)潤(rùn)滑。導(dǎo)軌可用以下兩種裝置進(jìn)行潤(rùn)滑:
1)間歇潤(rùn)滑,通過(guò)潤(rùn)滑脂嘴或油嘴進(jìn)行。這是一種適于運(yùn)動(dòng)速度低而不頻繁場(chǎng)合的方法。
2)連續(xù)潤(rùn)滑,例如通過(guò)計(jì)量閥和管道將潤(rùn)滑油泵送到潤(rùn)滑點(diǎn)。用這種方法引入兩表面間的油膜必定是很薄的,目的是避免使拖板“浮起”。如果滑移表面似鏡面平滑,油就會(huì)被擠出而導(dǎo)致表面粘貼。因而在實(shí)踐上,拖板滑移表面是用凹面砂輪的刃進(jìn)行磨削或進(jìn)行刮研。兩種工藝都可產(chǎn)生微小的表面凹痕,它就成為存油凹陷,相配合的零件就不會(huì)處處因“浮起”而發(fā)生分離,這樣使拖板確定保持接觸導(dǎo)軌。
(d)防護(hù)。為了維護(hù)導(dǎo)軌處于良好狀態(tài),以下條件必須滿足:
1)必須防止外面物質(zhì),如碎屑進(jìn)入。具有某一形狀的導(dǎo)軌那是所期望的。在這種場(chǎng)合,是不可能進(jìn)入雜物的,例如是倒V形的導(dǎo)軌時(shí),那就不可能保存碎屑雜物在導(dǎo)軌上。
2)必須保存潤(rùn)滑油。在垂直或傾斜的導(dǎo)軌面上使用的油要有粘性,那很重要。為了這種使用目的已經(jīng)專門(mén)研制出多種有用的潤(rùn)滑油。油的粘性也要保護(hù),以免被切削液沖毀。
3)必須用防護(hù)罩來(lái)防止意外的破壞。
車(chē)床:
一臺(tái)機(jī)床有三個(gè)主要功能:(1)牢固地支持工件或者刀架和刀具;(2)在工件和刀具之間提供相對(duì)運(yùn)動(dòng);(3)提供一定的走刀和切削速度范圍。以去除切屑形式來(lái)加工金屬的機(jī)床一般被分為四大類(lèi):使用單點(diǎn)刀具切削的機(jī)床;使用多點(diǎn)刀具切削的機(jī)床;使用隨機(jī)點(diǎn)刀具切削的機(jī)床(磨削)和考慮用于特殊場(chǎng)合的機(jī)床。
機(jī)床本質(zhì)上使用單點(diǎn)刀具切削包括:(1)普通車(chē)床;(2)塔式車(chē)床;(3)仿形車(chē)床;(4)單軸自動(dòng)車(chē)床;(5)多軸自動(dòng)車(chē)床;(6)牛頭刨床和龍門(mén)刨床;(7)鏜床。
使用多點(diǎn)刀具切削的機(jī)床包括:(1)鉆床;(2)銑床;(3)拉床;(4)鋸床;(5)齒輪切割機(jī)床。
使用隨機(jī)點(diǎn)刀具切削的機(jī)床包括:(1)外圓磨床;(2)無(wú)心磨床;(3)平面磨床。
普通車(chē)床是基本的旋削機(jī)床,從這點(diǎn)出發(fā),已經(jīng)研制出其他旋削機(jī)床。驅(qū)動(dòng)電機(jī)裝在床身基礎(chǔ)上并通過(guò)齒輪、皮帶相結(jié)合來(lái)驅(qū)動(dòng)主軸,以提供每分鐘25到1500轉(zhuǎn)的轉(zhuǎn)速。主軸是一根堅(jiān)固的空心軸,裝在重型軸承之間,其前端用來(lái)安裝驅(qū)動(dòng)盤(pán)(花盤(pán)),以便把確定的運(yùn)動(dòng)傳到工件。
該驅(qū)動(dòng)盤(pán)可借助螺紋、凸輪鎖緊機(jī)構(gòu)或借助一個(gè)螺紋墊圈和鍵固定在主軸上。
車(chē)床的床身是鑄鐵件,它提供精確的磨削的滑動(dòng)表面(導(dǎo)軌),其上放有拖板。該車(chē)床拖板是H型的鑄件,而刀具就安裝在拖板上的刀架上。溜板箱裝在拖板前面,并裝有移動(dòng)刀具的齒輪機(jī)構(gòu),而拖板順著導(dǎo)軌或橫過(guò)導(dǎo)軌以提供所希望的刀具的運(yùn)動(dòng)。拖板上面的小刀架能使刀夾回轉(zhuǎn)所要求的任意角度。為使刀具作線性運(yùn)動(dòng),在小刀架上裝有手輪和絲桿。以手輪和使小刀架垂直于車(chē)床導(dǎo)軌移動(dòng)的絲桿來(lái)提供橫向進(jìn)給。溜板箱中的齒輪系可為拖板沿著導(dǎo)軌和橫跨導(dǎo)軌提供動(dòng)力進(jìn)給。進(jìn)給箱齒輪將運(yùn)動(dòng)傳給拖板并控制刀具相對(duì)于工件的運(yùn)動(dòng)速度。典型的車(chē)床進(jìn)給范圍是主軸每轉(zhuǎn)從0.002到0.160英寸,大約有50級(jí)轉(zhuǎn)速。由于進(jìn)給箱的移動(dòng)運(yùn)動(dòng)是由主軸齒輪驅(qū)動(dòng)的,因此進(jìn)給量直接與主軸速度有關(guān)。進(jìn)給箱齒輪傳動(dòng)機(jī)構(gòu)也用于加工螺紋并能加工每英寸4到224扣螺紋。
進(jìn)給箱和車(chē)床溜板箱之間的連結(jié)軸是光桿和絲桿。許多車(chē)床制造商把這兩桿結(jié)合成一桿,實(shí)際上那就以精確的開(kāi)支減少機(jī)器的費(fèi)用。進(jìn)給桿(光桿)用于提供刀具的運(yùn)動(dòng),它對(duì)于精確的工件和好的表面光潔度是很重要的。螺紋導(dǎo)桿(絲桿)用于提供精確的(螺紋)導(dǎo)程,這對(duì)于螺紋切削是必需的。光桿是通過(guò)摩擦離合器來(lái)驅(qū)動(dòng)的,那樣在刀具切削超載情況下能夠打滑保護(hù)。這一安全裝置不能裝在絲桿上,因?yàn)槁菁y加工是不允許打滑的。由于螺紋全深很難一次走刀加工完成,因此裝設(shè)一螺紋指示盤(pán)作為下幾次走刀加工時(shí)重新對(duì)刀用。
車(chē)床裝有尾座,它具有一精確的軸,該軸有一錐孔,以便安裝鉆頭、鉆夾、鉸刀和車(chē)床頂針。尾座可以沿著車(chē)床導(dǎo)軌移動(dòng)以適應(yīng)工件的不同長(zhǎng)度以及加工錐體或錐形表面。
轉(zhuǎn)塔車(chē)床基本上是具有某種附加特性的普通車(chē)床,提供作為半自動(dòng)加工和減少人工操作誤差的機(jī)會(huì)。轉(zhuǎn)塔車(chē)床的拖板設(shè)有T形槽以便在車(chē)床導(dǎo)軌兩端安裝夾刀裝置,當(dāng)轉(zhuǎn)塔轉(zhuǎn)入到合適位置時(shí),要正確地裝設(shè)刀具以便進(jìn)行切削。拖板也裝設(shè)有自動(dòng)停機(jī)裝置以便控制刀具行程和提供良好的切削的再生產(chǎn)。轉(zhuǎn)塔車(chē)床的尾座是六角形結(jié)構(gòu),在六角頭中可以裝六把刀具。雖然裝刀和加工準(zhǔn)備要花大量時(shí)間,但轉(zhuǎn)塔車(chē)床一次裝刀以后無(wú)需熟練工人就可以連續(xù)地重復(fù)地操作加工,直到刀具變鈍并需更換為止。這樣轉(zhuǎn)塔車(chē)床僅就生產(chǎn)工作在經(jīng)濟(jì)上是可行的、合理的,于此,根據(jù)所制造零件的數(shù)量,為加工準(zhǔn)備需要花一定數(shù)量的時(shí)間那是合理的,無(wú)可非議的。
單軸自動(dòng)車(chē)床使用一個(gè)立式轉(zhuǎn)塔和兩個(gè)橫向溜板。工件通過(guò)機(jī)床主軸孔被送入卡盤(pán),而刀具是靠凸輪來(lái)自動(dòng)操作控制。
多軸自動(dòng)車(chē)床裝有四、五、六或八根主軸并且在每根主軸中裝一個(gè)工件。各主軸圍繞著一根中心軸來(lái)轉(zhuǎn)換位置。以主刀具溜板去接近各主軸。每根軸位上都裝有一側(cè)向可以獨(dú)立操作的刀具滑板。由于各刀具滑板都是靠凸輪操作的,因此加工準(zhǔn)備可能花幾天時(shí)間,因而至少需要5000件的批量生產(chǎn),它的使用才是合理的。這種機(jī)床的主要優(yōu)點(diǎn)就是所有的刀具同時(shí)工作,并且一個(gè)工人可以看管幾部機(jī)床。對(duì)于相對(duì)簡(jiǎn)單的零件而言,多軸自動(dòng)車(chē)床可以以每五秒鐘一件的速度生產(chǎn)加工出成品來(lái)。
附 件2:
Fundamentals of Machine Tools
Abstract:
In many cases products from the forming processes must undergo further refinements in size and surface finish to meet their design specifications. To meet such precise tolerances the removal of small amounts of material is needed. Usually machine tools are used for such operation.
Key words: machine tools; Lathes
Introduction of Machining
Machining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece.
Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may he produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form of raw material, so tong as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced.
Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be completed.
In the United States material removal is a big business—in excess of $ 36 X 109 per year, including material, labor, overhead, and machine tool shipments, is spent. Since 60 percent of the mechanical and industrial engineering and technology graduates have something connection with the machining industry either through sale, design, or operation of machine shops, or working in related industry it is wise for an engineering student to devote some time in his curriculum to studying material removal and machine tools.
A machine tool provides the means for cutting tools to shape a workpiece to required dimensions; the machine supports the tool and the workpiece in a controlled relationship through the functioning of its basic members, which are as follows:
(a) Bed, Structure or Frame. This is the main member, which provides a basis for, and a connection between, the spindles and slides; the distortion and vibration under load must be kept to a minimum.
(b) Slides and Slideways. The translation of a machine element (e.g. the slide) is normally achieved by straight-line motion under the constraint of accurate guiding surfaces (the slideway).
(c) Spindles and Bearings. Angular displacements take place about an axis of rotation; the position of this axis must be constant within extremely fine limits in machine tools, and is ensured by the provision of precision spindles and bearings.
(d) Power Unit. The electric motor is the universally adopted power unit for machine tools. By suitably positioning individual motors, belt and gear transmissions are reduced to a minimum.
(e) Transmission Linkage. Linkage is the general term used to denote the mechanical, hydraulic, pneumatic or electric mechanisms, which connect angular and linear displacements in defined relationship.
There are two broad divisions of machining operations:
(a) Roughing, for which the metal removal rate, and consequently the cutting force, is high, but the required dimensional accuracy relatively low.
(b) Finishing, for which the metal removal rate, and consequently the cutting force, is low, but the required dimensional accuracy relatively high.
It follows that static loads and dynamic loads, such as result from an unbalanced grindingwheel, are more significant in finishing operations than in roughing operations. The degree of precision achieved in anymachining process will usually be influenced by the magnitude of the deflections, which occur as a result of the force acting.
Machine tool frames are generally made in cast iron, although some may be steel casting or mild-steel fabrications. Cast iron is chosen because of its cheapness, rigidity,compressive strength and capacity for damping the vibrations set-up in machine operations.To avoid massive sections in castings, carefully designed systems of ribbing are used to offer the maximum restance to bending and torsional stresses. Two basic types of ribbing are box and diagonal. The box formation is convenient to produce, a apertures in walls permitting the positioning and extraction of cores. Diagonal ribbing provides grater torsional stiffness and yet permits.swarf to fall between the sections; it is frequently used for lathe beds.
The slides and slideways of a machine tool locate and guide members which more relative to eachother, usually changing the position of the tool relative to the workpiece. The movement generally takes the form of translation in a straight line, but is sometimes angular rotation e.g, tilting the wheel-head of a universal thread-grinding machine to an angle corresponding with the helix angle of the workpiece thread. The basic geometric elements of slides are flat, vee,dovetail and cylinder. These elements may be used separately or combined in various according to the applications Features of slidewys are as follows:
(a) Accuracy of Movement. Where a slide is to be displaced in a straight line, this line must lie in two mutually perpendicular planes and there must be no slide rotation. The general tolerance for straightness of machine tool slideways is 0~0.02mm per 1000mm; on horizontal surfaces this tolerance may be disposed so that a convex surface results, thus countering the sffsct of “sag” of the slideway.
(b) Means of Adjustment. To facilitate assembly, maintain accuracy and eliminate “play” between sliding members after wear has taken place, a strip is sometimes inserted in the slides. This is called a gibstrip. Usually, the gib is retained by socket-head screws passing through elongated slots; and is adjusted by grud-screws secured by lock nuts.
(c) Lubrication. Slideways may be lubricated by either of the following systems:
1) Intermittently though grease or oil nipples, a method suitable where morements are infrequent and speed low.
2) Continuously, e.g. by pumping though a metering valve and pipe-work to the point of application; the film of oil introduced between surfaces by these means must be extremely thin to avoid the slid “floating”. If sliding surfaces were optically flat oil would be squeezed out, resulting in the surfaces sticking. Hence in practice slide surfaces are either ground using the edge of a cup wheel, or scraped.Both processes produce minute surface depressions, which retain “pocket” of oil, and complete separation of the parts may not occur at all points; positive location of the slides is thus retained.
(d) Protection. To maintain slideways in good order, the following conditions must be met:
1) Ingress of foreign matter, e.g. swarf, must be prevented when this is no possible, it is desirable to have a form of slideway, which does not retain swarf, e.g. the inverted vee.
2)Lubricating oil must be retained. The adhesive property of oil for use on vertical or inclined slide surface is important; oils are available which have been specially developed for this purpose. The adhesiveness of oil also prevents it being washed away by cutting fluids.
3) Accidental damage must be prevented by protective guardchined following the press working operations
.Lathes
A machine tool performs three major functions: (1) it rigidly supports the workpiece or its holder and the cutting tool; (2) it provides relative motion between the workpiece and the cutting tool; (3) it provides a range of feeds and speeds. Machines used to remove metal in the form of chips are classified in four general groups : those using single-point tools, those using multipoint tools, those using randompoint tools, and those that are considered special.
Machines using basically the single-point cutting tools include: (1) engine lathes, (2) turret lathes, (3) tracing and duplicating lathes, (4) single-spindle automatic lathes, (5) multi-spindle automatic lathes, (6) shapers and planers, (7) boring machines.
Machines using multipoint cutting tools include: (1) drilling machines, (2) milling machines, (3) broaching machines, (4) sawing machines, (5) boring machines.
Machines using random-point cutting tools include: (1) cylindrical grinder, (2) milling machines, (3) surface grinders. Special metal removal methods include: (1) chemical milling, (2) electrical discharge machining, (3) ultrasonic machining.
The lathe removes material by rotating the workpiece against a cutter to produce external or internal cylindrical or conical surfaces. Ti is also commonly used for the production of flat surfaces by facing, in which the workpiece is rotated whiled the cutting tool is moved perpendicularly to the axis of rotation.
The engine lathe is the basic turning machine from which other turning machines have been developed. The drive motor is located in the base and drives the spindle through a combination of belts and gears, which provides the spindle speeds, with the forward end used for mounting a drive plate to impart positive motion to the workpiece. The drive plate may be fastened to be the spindle by threads, by a cam lock mechanism, or by a threaded collar and key.
The lathe bed is cast iron and provides accurately ground sliding surfaces on which the carriage rides. The lathe carriage is a H-shaped casting on which the cutting tool is mounted in a tool holder. The apron hangs from the front of the carriage and contains the driving gears that move the tool and carriage along or across the way to provide the desired tool motion.
A compound rest, located above the carriage provided for rotation of the tool holder through any desired angle. A hand wheel and feed screw are provided on the compound rest for linear motions of the tool. The cross feed is provided with a hand wheel and feed screw for moving the compound rest perpendicular to the lathe way. A gear train in the apron provides power feed for the carriage both along and across the way. The feed box contains gears to impart motion to the carriage and control the rate at which the tool moves relative to the workpiece. On a typical lathe feeds range from 0.002 to 0.160 in. per revolution of the spindle, in about 50 steps. Since the transmission in the feed box is driven from the spindle gears, the feeds are directly related to the spindle speed. The feed box gearing is also used in thread cutting and provides from 4 to 224 threads threads per in.
The turret lathe is basically an engine lathe with certain additional features to provide for semiautomatic operation and to reduce the opportunity for human error. The carriage of the turret lathe is provided with T-slots for mounting a tool-holding device on both sides of the lathe ways with tools properly set for cutting when rotated into position. The carriage is also equipped with automatic stops that control the tool travel and provide good reproduction of cuts. The tailstock of the turret lathe is of hexagonal design, in which six tools can be mounted. Although a large amount of time is consumed in setting up the tools and stops for operation, the turret lathe, once set, can continue to duplicate operations with a minimum of operator skill until the tools become dulled and need replacing. Thus, the turret lathe is economically feasible only for production work, where the amount of time necessary to prepare the machine for operation is justifiable in terms of the number of part to be made.
The single-spindle automatic lathe uses a vertical turret as well as two cross slides.The work is fed through the machine spindle into the chuck,and the tools are operated automatically by cams.
The multispindle automatic lathe is provided with four, five, six, or eight spindles, with one workpiece mounted in each spindles. Each spindle position is provided with a side tool-slide operated independently. Since all of the slides are operated by cams, the preparation of this machine may take several days, and a production run of at least 5000 parts is needed to justify its use. The principal advantage of this machine is that all tools work simultaneously, and one operator can handle several machines. For relatively simple parts, multispindle automatic lathes can turn out finished products at the rate of 1 every 5 sec.
References:
[1] Valliere D.Computer Aided Designing Manufacturing. Prentic Hall, 1990
[2] Goetsch D L.Midern Manufacturing Process. Delmar Publishers Inc, 1991
[3] Goetsch D L.Advanced Manufacturing Technology. Delmar Publishers Inc, 1990
[4] Amstead B H.Manufacturing Processes, 1987
[5] Metalforming Digest. ASM international, 1993
[6] Edwards Tr K S, McKee R B.Fundamentals of Mechanical Component Design. McGrawHill, 1991
[7] Chemov N.Machine Tools. Mir Publishers, 1984
[8] Wakil Sherif D E1. Processes and Design for Manufacturing. Prentice Hall, 1989
13
收藏