2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第5講 兩角和與差的正弦、余弦和正切 理 新人教A版.doc
《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第5講 兩角和與差的正弦、余弦和正切 理 新人教A版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第5講 兩角和與差的正弦、余弦和正切 理 新人教A版.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第5講 兩角和與差的正弦、余弦和正切 理 新人教A版 一、選擇題 1. 已知銳角α滿足cos 2α=cos ,則sin 2α等于( ) A. B.- C. D.- 解析 由cos 2α=cos 得(cos α-sin α)(cos α+sin α)=(cos α+sin α) 由α為銳角知cos α+sin α≠0. ∴cos α-sin α=,平方得1-sin 2α=. ∴sin 2α=. 答案 A 2.若=,則tan 2α等于 ( ). A. B.- C. D.- 解析?。剑剑剑? ∴tan α=2,∴tan 2α===-,故選D. 答案 D 3.已知α,β都是銳角,若sin α=,sin β=,則α+β= ( ). A. B. C.和 D.-和- 解析 由α,β都為銳角,所以cos α==,cos β==.所以cos(α+β)=cos αcos β-sin αsin β=,所以α+β=. 答案 A 4.已知sin θ+cos θ=,則sin θ-cos θ的值為 ( ). A. B.- C. D.- 解析 ∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+sin 2θ=,∴sin 2θ=,又0<θ<,∴sin θ- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第四章 第5講 兩角和與差的正弦、余弦和正切 新人教A版 2019 2020 年高 數(shù)學(xué) 專題 復(fù)習(xí) 導(dǎo)練測 第四 正弦 余弦 正切 新人
鏈接地址:http://kudomayuko.com/p-2730617.html