營(yíng)口市大石橋市2016屆九年級(jí)上段考數(shù)學(xué)試卷及答案解析.doc
《營(yíng)口市大石橋市2016屆九年級(jí)上段考數(shù)學(xué)試卷及答案解析.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《營(yíng)口市大石橋市2016屆九年級(jí)上段考數(shù)學(xué)試卷及答案解析.doc(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2015-2016學(xué)年遼寧省營(yíng)口市大石橋市九年級(jí)(上)段考數(shù)學(xué)試卷 一、選擇題(每題3分,共30分) 1.有下列關(guān)于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,③x2+y﹣3=0,④﹣x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0.其中是一元二次方程的有( ) A.2 B.3 C.4 D.5 2.拋物線(xiàn)y=﹣2x2+8x﹣1的頂點(diǎn)坐標(biāo)為( ) A.(﹣2,7) B.(﹣2,﹣25) C.(2,7) D.(2,﹣9) 3.用配方法解方程x2﹣2x﹣5=0時(shí),原方程應(yīng)變形為( ) A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9 4.拋物線(xiàn)y=a(x+1)(x﹣3)(a≠0)的對(duì)稱(chēng)軸是直線(xiàn)( ) A.x=1 B.x=﹣1 C.x=﹣3 D.x=3 5.三角形的兩邊長(zhǎng)是3和4,第三邊長(zhǎng)是方程x2﹣12x+35=0的根,則三角形的周長(zhǎng)為( ) A.12 B.13 C.14 D.12或14 6.若二次函數(shù)y=﹣x2+bx+c的圖象的最高點(diǎn)是(﹣1,﹣3),則b、c的值分別是( ) A.b=2,c=4 B.b=﹣2,c=﹣4 C.b=2,c=﹣4 D.b=﹣2,c=4 7.方程x2﹣=0的根的情況為( ) A.有一個(gè)實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根 C.沒(méi)有實(shí)數(shù)根 D.有兩個(gè)相等的實(shí)數(shù)根 8.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件,全組共互贈(zèng)了182件,如果全組有x名同學(xué),則根據(jù)題意列出的方程是( ) A.x(x+1)=182 B.x(x﹣1)=182 C.x(x+1)=1822 D.x(x﹣1)=1822 9.若關(guān)于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,則2015﹣a﹣b的值是( ) A.2017 B.2018 C.2019 D.2020 10.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②﹣b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 二、填空題(每題3分,共24分) 11.關(guān)于x的方程(m﹣2)x|m|+3x﹣1=0是一元二次方程,則m的值為_(kāi)_________. 12.正方形邊長(zhǎng)3,若邊長(zhǎng)增加x,則面積增加y,y與x的函數(shù)關(guān)系式為_(kāi)_________. 13.已知關(guān)于x的方程x2+mx﹣6=0的一個(gè)根為2,則m=__________,另一個(gè)根是__________. 14.拋物線(xiàn)y=x2+的開(kāi)口向__________,對(duì)稱(chēng)軸是__________. 15.將拋物線(xiàn)y=x2+1先向左平移2個(gè)單位,再向下平移3個(gè)單位,那么所得拋物線(xiàn)的函數(shù)關(guān)系式是__________. 16.已知x1,x2是方程x2+2013x+1=0的兩個(gè)根,則(1+2015x1+x12)(1+2015x2+x22)的值為_(kāi)_________. 17.二次函數(shù)y=2x2+3x﹣9的圖象與x軸交點(diǎn)的橫坐標(biāo)是__________. 18.按下圖的程序進(jìn)行計(jì)算,若結(jié)果是2006,則x=__________. 三、解答題(共96分) 19.用指定的方法解方程 (1)(x+2)2﹣25=0(直接開(kāi)平方法) (2)x2+4x﹣5=0(配方法) (3)4(x+3)2﹣(x﹣2)2=0(因式分解法) (4)2x2+8x﹣1=0(公式法) 20.把二次函數(shù)y=x2﹣3x+4配方成y=a(x﹣k)2+h的形式,并求出它的圖象的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸方程,并畫(huà)出圖象. 21.已知:關(guān)于x的一元二次方程x2+(2m﹣4)x+m2=0有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出方程的解. 22.某市為爭(zhēng)創(chuàng)全國(guó)文明衛(wèi)生城,2012年市政府對(duì)市區(qū)綠化工程投入的資金是2000萬(wàn)元,2014年投入的資金是2420萬(wàn)元. (1)求該市對(duì)市區(qū)綠化工程投入資金的年平均增長(zhǎng)率; (2)若投入資金的年平均增長(zhǎng)率不變,那么該市在2015年需投入資金多少萬(wàn)元? 23.如圖,在△ABC中,∠B=90,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),Q從點(diǎn)B開(kāi)始沿BC邊向C點(diǎn)以2cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從A、B同時(shí)出發(fā),幾秒鐘后,△PBQ的面積等于8cm2? 24.如圖,某小區(qū)在寬20m,長(zhǎng)32m的矩形地面上修筑同樣寬的人行道(圖中陰影部分),余下的部分種上草坪.要使草坪的面積為540m2,求道路的寬. 25.某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元出售,那么每月可售出500個(gè),根據(jù)銷(xiāo)售經(jīng)驗(yàn),售價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少10個(gè); (1)假設(shè)銷(xiāo)售單價(jià)提高x元,那么銷(xiāo)售每個(gè)籃球所獲得的利潤(rùn)是__________元;這種籃球每月的銷(xiāo)售量是__________個(gè);(用含x的代數(shù)式表示) (2)若商店準(zhǔn)備獲利8000元,則銷(xiāo)售定價(jià)為多少元?商店應(yīng)進(jìn)貨多少個(gè)? 26.(14分)拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3). (1)求該拋物線(xiàn)的解析式及頂點(diǎn)M的坐標(biāo); (2)當(dāng)y的值大于0時(shí),求x的取值范圍; (3)分別求出△BCM與△ABC的面積. 2015-2016學(xué)年遼寧省營(yíng)口市大石橋市九年級(jí)(上)段考數(shù)學(xué)試卷 一、選擇題(每題3分,共30分) 1.有下列關(guān)于x的方程:①ax2+bx+c=0,②3x(x﹣4)=0,③x2+y﹣3=0,③x2+y﹣3=0,④﹣x=2,⑤x3﹣3x+8=0,⑥x2﹣5x+7=0.其中是一元二次方程的有( ) A.2 B.3 C.4 D.5 【考點(diǎn)】一元二次方程的定義. 【分析】根據(jù)一元二次方程必須滿(mǎn)足四個(gè)條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項(xiàng)系數(shù)不為0;(3)是整式方程;(4)含有一個(gè)未知數(shù).由這四個(gè)條件對(duì)四個(gè)選項(xiàng)進(jìn)行驗(yàn)證,滿(mǎn)足這四個(gè)條件者為正確答案. 【解答】解:①ax2+bx+c=0,不是一元二次方程,①錯(cuò)誤; ②3x(x﹣4)=0,是一元二次方程,②正確; ③x2+y﹣3=0,不是一元二次方程,③錯(cuò)誤; ④﹣x=2,不是一元二次方程,④錯(cuò)誤; ⑤x3﹣3x+8=0,不是一元二次方程,⑤錯(cuò)誤; ⑥x2﹣5x+7=0,是一元二次方程,⑥正確, 故選:A. 【點(diǎn)評(píng)】本題考查了一元二次方程的概念,判斷一個(gè)方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡(jiǎn)后是否是只含有一個(gè)未知數(shù)且未知數(shù)的最高次數(shù)是2. 2.拋物線(xiàn)y=﹣2x2+8x﹣1的頂點(diǎn)坐標(biāo)為( ) A.(﹣2,7) B.(﹣2,﹣25) C.(2,7) D.(2,﹣9) 【考點(diǎn)】二次函數(shù)的性質(zhì). 【分析】代入頂點(diǎn)坐標(biāo)公式,或用配方法將拋物線(xiàn)解析式寫(xiě)成頂點(diǎn)式,確定頂點(diǎn)坐標(biāo). 【解答】解:∵y=﹣2x2+8x﹣1=﹣2(x﹣2)2+7,∴頂點(diǎn)坐標(biāo)為(2,7).故選C. 【點(diǎn)評(píng)】要求學(xué)生熟記頂點(diǎn)坐標(biāo)公式或者配方法的解題思路. 3.用配方法解方程x2﹣2x﹣5=0時(shí),原方程應(yīng)變形為( ) A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=9 【考點(diǎn)】解一元二次方程-配方法. 【專(zhuān)題】方程思想. 【分析】配方法的一般步驟: (1)把常數(shù)項(xiàng)移到等號(hào)的右邊; (2)把二次項(xiàng)的系數(shù)化為1; (3)等式兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方. 【解答】解:由原方程移項(xiàng),得 x2﹣2x=5, 方程的兩邊同時(shí)加上一次項(xiàng)系數(shù)﹣2的一半的平方1,得 x2﹣2x+1=6 ∴(x﹣1)2=6. 故選:C. 【點(diǎn)評(píng)】此題考查了配方法解一元二次方程,解題時(shí)要注意解題步驟的準(zhǔn)確應(yīng)用.選擇用配方法解一元二次方程時(shí),最好使方程的二次項(xiàng)的系數(shù)為1,一次項(xiàng)的系數(shù)是2的倍數(shù). 4.拋物線(xiàn)y=a(x+1)(x﹣3)(a≠0)的對(duì)稱(chēng)軸是直線(xiàn)( ) A.x=1 B.x=﹣1 C.x=﹣3 D.x=3 【考點(diǎn)】二次函數(shù)的圖象. 【分析】已知拋物線(xiàn)解析式為交點(diǎn)式,通過(guò)解析式可求拋物線(xiàn)與x軸的兩交點(diǎn)坐標(biāo);兩交點(diǎn)的橫坐標(biāo)的平均數(shù)就是對(duì)稱(chēng)軸. 【解答】解:∵﹣1,3是方程a(x+1)(x﹣3)=0的兩根, ∴拋物線(xiàn)y=a(x+1)(x﹣3)與x軸交點(diǎn)橫坐標(biāo)是﹣1,3, ∵這兩個(gè)點(diǎn)關(guān)于對(duì)稱(chēng)軸對(duì)稱(chēng), ∴對(duì)稱(chēng)軸是x==1. 故選A. 【點(diǎn)評(píng)】此題考查對(duì)稱(chēng)軸的性質(zhì):拋物線(xiàn)上的兩點(diǎn)縱坐標(biāo)相同時(shí),對(duì)稱(chēng)軸是兩點(diǎn)橫坐標(biāo)的平均數(shù). 5.三角形的兩邊長(zhǎng)是3和4,第三邊長(zhǎng)是方程x2﹣12x+35=0的根,則三角形的周長(zhǎng)為( ) A.12 B.13 C.14 D.12或14 【考點(diǎn)】解一元二次方程-因式分解法;三角形三邊關(guān)系. 【專(zhuān)題】計(jì)算題. 【分析】首先求出方程的根,再根據(jù)三角形三邊關(guān)系定理,確定第三邊的長(zhǎng),進(jìn)而求其周長(zhǎng)和面積. 【解答】解:解方程x2﹣12x+35=0,得x1=5,x2=7,即第三邊的邊長(zhǎng)為5或7. ∵1<第三邊的邊長(zhǎng)<7, ∴第三邊的邊長(zhǎng)為5. ∴這個(gè)三角形的周長(zhǎng)是3+4+5=12. 故選A. 【點(diǎn)評(píng)】本題考查了三角形的三邊關(guān)系.已知三角形的兩邊,則第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和. 6.若二次函數(shù)y=﹣x2+bx+c的圖象的最高點(diǎn)是(﹣1,﹣3),則b、c的值分別是( ) A.b=2,c=4 B.b=﹣2,c=﹣4 C.b=2,c=﹣4 D.b=﹣2,c=4 【考點(diǎn)】二次函數(shù)的最值. 【專(zhuān)題】函數(shù)思想. 【分析】根據(jù)二次函數(shù)y=﹣x2+bx+c的二次項(xiàng)系數(shù)﹣1來(lái)確定該函數(shù)的圖象的開(kāi)口方向,由二次函數(shù)y=﹣x2+bx+c的圖象的最高點(diǎn)是(﹣1,﹣3)確定該函數(shù)的頂點(diǎn)坐標(biāo),然后根據(jù)頂點(diǎn)坐標(biāo)公式解答b、c的值. 【解答】解:∵二次函數(shù)y=﹣x2+bx+c的二次項(xiàng)系數(shù)﹣1<0, ∴該函數(shù)的圖象的開(kāi)口方向向下, ∴二次函數(shù)y=﹣x2+bx+c的圖象的最高點(diǎn)坐標(biāo)(﹣1,﹣3)就是該函數(shù)的頂點(diǎn)坐標(biāo), ∴﹣1=﹣,即b=﹣2;① ﹣3=,即b2+4c﹣12=0;② 由①②解得,b=﹣2,c=﹣4; 故選B. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的最值.解答此題時(shí),弄清楚“二次函數(shù)y=﹣x2+bx+c的圖象的最高點(diǎn)坐標(biāo)(﹣1,﹣3)就是該函數(shù)的頂點(diǎn)坐標(biāo)”是解題的關(guān)鍵. 7.方程x2﹣=0的根的情況為( ) A.有一個(gè)實(shí)數(shù)根 B.有兩個(gè)不相等的實(shí)數(shù)根 C.沒(méi)有實(shí)數(shù)根 D.有兩個(gè)相等的實(shí)數(shù)根 【考點(diǎn)】根的判別式. 【分析】要判定方程根的情況,首先求出其判別式,然后判定其正負(fù)情況即可作出判斷. 【解答】解:∵x2﹣=0=0, ∴△=b2﹣4ac=8﹣8=0, ∴方程有兩個(gè)相等的實(shí)數(shù)根. 故選D. 【點(diǎn)評(píng)】此題利用了一元二次方程根的情況與判別式△的關(guān)系: (1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根; (2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根; (3)△<0?方程沒(méi)有實(shí)數(shù)根. 8.生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈(zèng)送一件,全組共互贈(zèng)了182件,如果全組有x名同學(xué),則根據(jù)題意列出的方程是( ) A.x(x+1)=182 B.x(x﹣1)=182 C.x(x+1)=1822 D.x(x﹣1)=1822 【考點(diǎn)】由實(shí)際問(wèn)題抽象出一元二次方程. 【分析】先求每名同學(xué)贈(zèng)的標(biāo)本,再求x名同學(xué)贈(zèng)的標(biāo)本,而已知全組共互贈(zèng)了182件,故根據(jù)等量關(guān)系可得到方程. 【解答】解:設(shè)全組有x名同學(xué), 則每名同學(xué)所贈(zèng)的標(biāo)本為:(x﹣1)件, 那么x名同學(xué)共贈(zèng):x(x﹣1)件, 所以,x(x﹣1)=182. 故選B. 【點(diǎn)評(píng)】本題考查一元二次方程的實(shí)際運(yùn)用:要全面、系統(tǒng)地弄清問(wèn)題的已知和未知,以及它們之間的數(shù)量關(guān)系,找出并全面表示問(wèn)題的相等關(guān)系,設(shè)出未知數(shù),用方程表示出已知量與未知量之間的等量關(guān)系,即列出一元二次方程. 9.若關(guān)于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,則2015﹣a﹣b的值是( ) A.2017 B.2018 C.2019 D.2020 【考點(diǎn)】一元二次方程的解. 【分析】把x=1代入已知方程求得(a+b)的值,然后將其整體代入所求的代數(shù)式并求值即可. 【解答】解:∵關(guān)于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1, ∴a+b+5=0, ∴a+b=﹣5, ∴2015﹣a﹣b=2015﹣(a+b)=2015﹣(﹣5)=2020; 故選D. 【點(diǎn)評(píng)】本題考查了一元二次方程的解定義.解題時(shí),利用了“整體代入”的數(shù)學(xué)思想. 10.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列4個(gè)結(jié)論:①abc>0;②﹣b<a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論有( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系. 【分析】首先根據(jù)開(kāi)口方向確定a的取值范圍,根據(jù)對(duì)稱(chēng)軸的位置確定b的取值范圍,根據(jù)拋物線(xiàn)與y軸的交點(diǎn)確定c的取值范圍,根據(jù)拋物線(xiàn)與x軸是否有交點(diǎn)確定b2﹣4ac的取值范圍,根據(jù)圖象和x=2的函數(shù)值即可確定4a+2b+c的取值范圍,根據(jù)x=1的函數(shù)值可以確定b<a+c是否成立. 【解答】解:∵拋物線(xiàn)開(kāi)口朝下, ∴a<0, ∵對(duì)稱(chēng)軸x=1=﹣, ∴b>0, ∵拋物線(xiàn)與y軸的交點(diǎn)在x軸的上方, ∴c>0, ∴abc<0,故①錯(cuò)誤; 根據(jù)圖象知道當(dāng)x=﹣1時(shí),y=a﹣b+c<0, ∴a+c<b,故②錯(cuò)誤; 根據(jù)圖象知道當(dāng)x=2時(shí),y=4a+2b+c>0,故③正確; 根據(jù)圖象知道拋物線(xiàn)與x軸有兩個(gè)交點(diǎn), ∴b2﹣4ac>0,故④正確. 正確的有③④. 故選:B. 【點(diǎn)評(píng)】此題主要考查圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱(chēng)軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用. 二、填空題(每題3分,共24分) 11.關(guān)于x的方程(m﹣2)x|m|+3x﹣1=0是一元二次方程,則m的值為﹣2. 【考點(diǎn)】一元二次方程的定義. 【專(zhuān)題】計(jì)算題. 【分析】根據(jù)一元二次方程的定義得到m﹣2≠0且|m|=2,然后解方程和不等式即可得到滿(mǎn)足條件的m的值. 【解答】解:∵關(guān)于x的方程(m﹣2)x|m|+3x﹣1=0是一元二次方程, ∴m﹣2≠0且|m|=2, ∴m=﹣2. 故答案為﹣2. 【點(diǎn)評(píng)】本題考查了一元二次方程的定義:形如ax2+bx+c=0(a≠0,a、b、c為常數(shù))的方程叫一元二次方程. 12.正方形邊長(zhǎng)3,若邊長(zhǎng)增加x,則面積增加y,y與x的函數(shù)關(guān)系式為y=x2+6x. 【考點(diǎn)】根據(jù)實(shí)際問(wèn)題列二次函數(shù)關(guān)系式. 【分析】增加的面積=邊長(zhǎng)為3+x的新正方形的面積﹣邊長(zhǎng)為3的正方形的面積,把相關(guān)數(shù)值代入即可求解. 【解答】解:由正方形邊長(zhǎng)3,邊長(zhǎng)增加x,增加后的邊長(zhǎng)為(x+3), 則面積增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x. 故應(yīng)填:y=x2+6x. 【點(diǎn)評(píng)】解決本題的關(guān)鍵是得到增加的面積的等量關(guān)系,注意新正方形的邊長(zhǎng)為3+x. 13.已知關(guān)于x的方程x2+mx﹣6=0的一個(gè)根為2,則m=1,另一個(gè)根是﹣3. 【考點(diǎn)】一元二次方程的解;根與系數(shù)的關(guān)系. 【專(zhuān)題】方程思想. 【分析】根據(jù)一元二次方程的解定義,將x=2代入關(guān)于x的方程x2+mx﹣6=0,然后解關(guān)于m的一元一次方程;再根據(jù)根與系數(shù)的關(guān)系x1+x2=﹣解出方程的另一個(gè)根. 【解答】解:根據(jù)題意,得 4+2m﹣6=0,即2m﹣2=0, 解得,m=1; 由韋達(dá)定理,知 x1+x2=﹣m; ∴2+x2=﹣1, 解得,x2=﹣3. 故答案是:1、﹣3. 【點(diǎn)評(píng)】本題主要考查了一元二次方程的解、根與系數(shù)的關(guān)系.在利用根與系數(shù)的關(guān)系x1+x2=﹣、x1?x2=來(lái)計(jì)算時(shí),要弄清楚a、b、c的意義. 14.拋物線(xiàn)y=x2+的開(kāi)口向上,對(duì)稱(chēng)軸是y軸. 【考點(diǎn)】二次函數(shù)的性質(zhì). 【專(zhuān)題】計(jì)算題. 【分析】根據(jù)二次函數(shù)的性質(zhì)求解. 【解答】解:拋物線(xiàn)y=x2+的開(kāi)口向上,對(duì)稱(chēng)軸為y軸. 故答案為上,y軸. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì):二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(﹣,),對(duì)稱(chēng)軸直線(xiàn)x=﹣,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):當(dāng)a>0時(shí),拋物線(xiàn)y=ax2+bx+c(a≠0)的開(kāi)口向上,x<﹣時(shí),y隨x的增大而減小;x>﹣時(shí),y隨x的增大而增大;x=﹣時(shí),y取得最小值4ac﹣b24a,即頂點(diǎn)是拋物線(xiàn)的最低點(diǎn).當(dāng)a<0時(shí),拋物線(xiàn)y=ax2+bx+c(a≠0)的開(kāi)口向下,x<﹣時(shí),y隨x的增大而增大;x>﹣時(shí),y隨x的增大而減?。粁=﹣時(shí),y取得最大值4ac﹣b24a,即頂點(diǎn)是拋物線(xiàn)的最高點(diǎn). 15.將拋物線(xiàn)y=x2+1先向左平移2個(gè)單位,再向下平移3個(gè)單位,那么所得拋物線(xiàn)的函數(shù)關(guān)系式是y=(x+2)2﹣2. 【考點(diǎn)】二次函數(shù)圖象與幾何變換. 【分析】先求出平移后的拋物線(xiàn)的頂點(diǎn)坐標(biāo),再利用頂點(diǎn)式拋物線(xiàn)解析式寫(xiě)出即可. 【解答】解:拋物線(xiàn)y=x2+1的頂點(diǎn)坐標(biāo)為(0,1), 向左平移2個(gè)單位,向下平移3個(gè)單位后的拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(﹣2,﹣2), 所以,平移后的拋物線(xiàn)的解析式為y=(x+2)2﹣2. 故答案為:y=(x+2)2﹣2. 【點(diǎn)評(píng)】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用根據(jù)規(guī)律利用點(diǎn)的變化確定函數(shù)解析式. 16.已知x1,x2是方程x2+2013x+1=0的兩個(gè)根,則(1+2015x1+x12)(1+2015x2+x22)的值為4. 【考點(diǎn)】根與系數(shù)的關(guān)系;一元二次方程的解. 【專(zhuān)題】計(jì)算題. 【分析】先根據(jù)一元二次方程的解的定義得到x12+2013x1+1=0,x22+2013x2+1=0,則x12+1=﹣2013x1,x22+1=﹣2013x2,于是原式可化簡(jiǎn)為2x1?2x2,然后利用根與系數(shù)的關(guān)系計(jì)算. 【解答】解:∵x1,x2是方程x2+2013x+1=0的兩個(gè)根, ∴x12+2013x1+1=0,x22+2013x2+1=0, ∴x12+1=﹣2013x1,x22+1=﹣2013x2, ∴原式=2x1?2x2 =4x1?x2, ∵x1,x2是方程x2+2013x+1=0的兩個(gè)根, ∴x1?x2=1, ∴原式=4. 故答案為4. 【點(diǎn)評(píng)】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=,x1x2=.也考查了一元二次方程的解. 17.二次函數(shù)y=2x2+3x﹣9的圖象與x軸交點(diǎn)的橫坐標(biāo)是﹣3或. 【考點(diǎn)】拋物線(xiàn)與x軸的交點(diǎn). 【分析】由二次函數(shù)的圖象與x軸交點(diǎn)的縱坐標(biāo)為0,得出一元二次方程,解方程即可. 【解答】解:∵二次函數(shù)y=2x2+3x﹣9的圖象與x軸交點(diǎn)的縱坐標(biāo)為0, ∴2x2+3x﹣9=0, 解得:x=﹣3,或x=, ∴二次函數(shù)y=2x2+3x﹣9的圖象與x軸交點(diǎn)的橫坐標(biāo)是﹣3或; 故答案為:﹣3或. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)的求法、一元二次方程的解法;由二次函數(shù)的圖象與x軸交點(diǎn)的縱坐標(biāo)為0得出方程是解決問(wèn)題的關(guān)鍵. 18.按下圖的程序進(jìn)行計(jì)算,若結(jié)果是2006,則x=3或﹣1. 【考點(diǎn)】解一元二次方程-因式分解法;代數(shù)式求值. 【專(zhuān)題】圖表型. 【分析】根據(jù)程序可知,2012﹣3y=2006,求得y=2,然后再根據(jù)程序可知x2﹣2x﹣1=2,解方程即可求得x的值. 【解答】解:∵2012﹣3y=2006, ∴y=2, ∵x2﹣2x﹣1=2, ∴x2﹣2x﹣3=0, (x﹣3)(x+1)=0, x1=3,x2=﹣1; 故答案為3或﹣1. 【點(diǎn)評(píng)】本題考查了解一元二次方程以及代數(shù)式的值,解答本題的關(guān)鍵就是弄清楚題圖給出的計(jì)算程序. 三、解答題(共96分) 19.用指定的方法解方程 (1)(x+2)2﹣25=0(直接開(kāi)平方法) (2)x2+4x﹣5=0(配方法) (3)4(x+3)2﹣(x﹣2)2=0(因式分解法) (4)2x2+8x﹣1=0(公式法) 【考點(diǎn)】解一元二次方程-因式分解法;解一元二次方程-直接開(kāi)平方法;解一元二次方程-配方法;解一元二次方程-公式法. 【分析】(1)把﹣25移到等號(hào)的右邊,然后利用直接開(kāi)平方法求解; (2)把﹣5移到等號(hào)的右邊,然后等號(hào)兩邊同時(shí)加上一次項(xiàng)一半的平方,再開(kāi)方求解; (3)直接利用平方差公式把方程左邊分解因式,進(jìn)而整理為兩個(gè)一次因式的乘積,最后解一元一次方程即可; (4)首先找出方程中a、b和c的值,求出△,進(jìn)而代入求根公式求出方程的解. 【解答】解:(1)∵(x+2)2﹣25=0, ∴(x+2)2=25, ∴x+2=5, ∴x1=3,x2=﹣7; (2)∵x2+4x﹣5=0, ∴x2+4x+4=9, ∴(x+2)2=9, ∴x+2=3, ∴x1=﹣5,x2=1; (3)∵4(x+3)2﹣(x﹣2)2=0, ∴[2(x+3)+(x﹣2)][2(x+3)﹣(x﹣2)]=0, ∴(3x+4)(x+8)=0, ∴3x+4=0或x+8=0, ∴x1=﹣,x2=﹣8; (4)∵a=2,b=8,c=﹣1, ∴△=b2﹣4ac=64+8=72, ∴x==, ∴x1=,x2=. 【點(diǎn)評(píng)】本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開(kāi)平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點(diǎn)靈活選用合適的方法. 20.把二次函數(shù)y=x2﹣3x+4配方成y=a(x﹣k)2+h的形式,并求出它的圖象的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸方程,并畫(huà)出圖象. 【考點(diǎn)】二次函數(shù)的三種形式;二次函數(shù)的圖象;二次函數(shù)的性質(zhì). 【分析】利用配方法將二次函數(shù)y=x2﹣3x+4配方成y=a(x﹣k)2+h的形式,根據(jù)函數(shù)解析式可以直接得到它的圖象的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸方程. 【解答】解:y=(x﹣3)2﹣,頂點(diǎn)(3,﹣),對(duì)稱(chēng)軸:直線(xiàn)x=3. 當(dāng)x=0時(shí),y=4; 當(dāng)y=0時(shí),x=4或x=2, 所以該函數(shù)圖象與x軸的交點(diǎn)是(4,0)、(2,0);與y軸的交點(diǎn)是(0,4). 其圖象如圖所示: . 【點(diǎn)評(píng)】本題綜合考查了二次 函數(shù)的三種形式、二次函數(shù)的圖象與性質(zhì).二次函數(shù)的解析式有三種形式: (1)一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)); (2)頂點(diǎn)式:y=a(x﹣h)2+k; (3)交點(diǎn)式(與x軸):y=a(x﹣x1)(x﹣x2). 21.已知:關(guān)于x的一元二次方程x2+(2m﹣4)x+m2=0有兩個(gè)相等的實(shí)數(shù)根,求m的值,并求出方程的解. 【考點(diǎn)】根的判別式. 【專(zhuān)題】計(jì)算題. 【分析】由一元二次方程x2+(2m﹣4)x+m2=0有兩個(gè)相等的實(shí)數(shù)根,得△=0,即△=(2m﹣4)2﹣4m2=﹣16m+16=0,可解得m=1,然后把m=1代入方程得x2﹣2x+1=0,解此方程即可. 【解答】解:∵關(guān)于x的一元二次方程x2+(2m﹣4)x+m2=0有兩個(gè)相等的實(shí)數(shù)根, ∴△=0,即△=(2m﹣4)2﹣4m2=﹣16m+16=0, 解方程﹣16m+16=0,得m=1. 所以原方程變?yōu)椋簒2﹣2x+1=0,(x﹣1)2=0,則x1=x2=1. 因此所求的m的值為1,此時(shí)方程的解為x1=x2=1. 【點(diǎn)評(píng)】本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))根的判別式.當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根. 22.某市為爭(zhēng)創(chuàng)全國(guó)文明衛(wèi)生城,2012年市政府對(duì)市區(qū)綠化工程投入的資金是2000萬(wàn)元,2014年投入的資金是2420萬(wàn)元. (1)求該市對(duì)市區(qū)綠化工程投入資金的年平均增長(zhǎng)率; (2)若投入資金的年平均增長(zhǎng)率不變,那么該市在2015年需投入資金多少萬(wàn)元? 【考點(diǎn)】一元二次方程的應(yīng)用. 【專(zhuān)題】增長(zhǎng)率問(wèn)題. 【分析】(1)設(shè)出增長(zhǎng)率為x,則根據(jù)增長(zhǎng)率類(lèi)型可列出方程,解出x即可; (2)利用(1)中求出的增長(zhǎng)率,可知2015年的投入資金是2014年的(1+x)倍,計(jì)算即可. 【解答】解:(1)設(shè)該市對(duì)市區(qū)綠化工程投入資金的年平均增長(zhǎng)率為x, 根據(jù)題意可得:2000(1+x)2=2420, 即(1+x)2=1.21, 解得x=0.1或x=﹣1.1(舍去). 即該市對(duì)市區(qū)綠化工程投入資金的年平均增長(zhǎng)率為10%; (2)2420(1+10%)=24201.1=2662(元). 答:(1)該市對(duì)市區(qū)綠化工程投入資金的年平均增長(zhǎng)率為10%;(2)在2015年需投入資金為2662萬(wàn)元. 【點(diǎn)評(píng)】本題主要考查一元二次方程的應(yīng)用,掌握增長(zhǎng)率類(lèi)型的題目的公式是解題的關(guān)鍵. 23.如圖,在△ABC中,∠B=90,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),Q從點(diǎn)B開(kāi)始沿BC邊向C點(diǎn)以2cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從A、B同時(shí)出發(fā),幾秒鐘后,△PBQ的面積等于8cm2? 【考點(diǎn)】一元二次方程的應(yīng)用. 【專(zhuān)題】幾何動(dòng)點(diǎn)問(wèn)題. 【分析】本題中根據(jù)直角三角形的面積公式和路程=速度時(shí)間進(jìn)行求解即可. 【解答】解:設(shè)x秒鐘后,△PBQ的面積等于8cm2,其中0<x<6,由題意可得: 2x(6﹣x)2=8 解得x1=2,x2=4. 經(jīng)檢驗(yàn)均是原方程的解. 答:2或4秒鐘后,△PBQ的面積等于8cm2. 【點(diǎn)評(píng)】找到關(guān)鍵描述語(yǔ)“△PBQ的面積等于8cm2”,找到等量關(guān)系是解決問(wèn)題的關(guān)鍵. 24.如圖,某小區(qū)在寬20m,長(zhǎng)32m的矩形地面上修筑同樣寬的人行道(圖中陰影部分),余下的部分種上草坪.要使草坪的面積為540m2,求道路的寬. 【考點(diǎn)】一元二次方程的應(yīng)用. 【專(zhuān)題】幾何圖形問(wèn)題. 【分析】本題中我們可以根據(jù)矩形的性質(zhì),先將道路進(jìn)行平移,然后根據(jù)矩形的面積公式列方程求解. 【解答】解法一:原圖經(jīng)過(guò)平移轉(zhuǎn)化為圖1. 設(shè)道路寬為X米, 根據(jù)題意,得(32﹣x)=540. 整理得x2﹣52x+100=0. 解得x1=50(不合題意,舍去),x2=2. 答:道路寬為2米. 解法二:原圖經(jīng)過(guò)平移轉(zhuǎn)化為圖2. 設(shè)道路寬為x米, 根據(jù)題意,2032﹣x+x2=540 整理得x2﹣52x+100=0. 解得x1=50(不合題意,舍去),x2=2. 答:道路寬為2米. 【點(diǎn)評(píng)】對(duì)于面積問(wèn)題應(yīng)熟記各種圖形的面積公式.本題中按原圖進(jìn)行計(jì)算比較復(fù)雜時(shí),可根據(jù)圖形的性質(zhì)適當(dāng)?shù)倪M(jìn)行轉(zhuǎn)換化簡(jiǎn),然后根據(jù)題意列出方程求解. 25.某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的籃球,如果以單價(jià)50元出售,那么每月可售出500個(gè),根據(jù)銷(xiāo)售經(jīng)驗(yàn),售價(jià)每提高1元,銷(xiāo)售量相應(yīng)減少10個(gè); (1)假設(shè)銷(xiāo)售單價(jià)提高x元,那么銷(xiāo)售每個(gè)籃球所獲得的利潤(rùn)是10+x元;這種籃球每月的銷(xiāo)售量是500﹣10x個(gè);(用含x的代數(shù)式表示) (2)若商店準(zhǔn)備獲利8000元,則銷(xiāo)售定價(jià)為多少元?商店應(yīng)進(jìn)貨多少個(gè)? 【考點(diǎn)】一元二次方程的應(yīng)用. 【專(zhuān)題】銷(xiāo)售問(wèn)題. 【分析】(1)根據(jù)利潤(rùn)問(wèn)題的數(shù)量關(guān)系,利潤(rùn)=售價(jià)﹣進(jìn)價(jià)就可以得出每個(gè)籃球的利潤(rùn),根據(jù)銷(xiāo)量與進(jìn)價(jià)的關(guān)系就可以求出結(jié)論; (2)每個(gè)籃球的利潤(rùn)籃球的數(shù)量=8000,把相關(guān)數(shù)值代入求得合適的解即可. 【解答】解:(1)由題意,得 每個(gè)籃球所獲得的利潤(rùn)是(x+10)元,籃球每月的銷(xiāo)售量是(500﹣10x)個(gè); 故答案為:x+10,500﹣10x; (2)(10+x)(500﹣10x)=8000, (10+x)(50﹣x)=800, ﹣x2+40x﹣300=0, x2﹣40x+300=0, (x﹣10)(x﹣30)=0, 解得x1=10,x2=30, 故定價(jià)為60或80元, 500﹣10x=400或200. 答:銷(xiāo)售定價(jià)為60或80元,進(jìn)貨400或200個(gè). 【點(diǎn)評(píng)】考查了一元二次方程的應(yīng)用,得到籃球的月銷(xiāo)售量是解決本題的易錯(cuò)點(diǎn). 26.(14分)拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3). (1)求該拋物線(xiàn)的解析式及頂點(diǎn)M的坐標(biāo); (2)當(dāng)y的值大于0時(shí),求x的取值范圍; (3)分別求出△BCM與△ABC的面積. 【考點(diǎn)】拋物線(xiàn)與x軸的交點(diǎn). 【專(zhuān)題】計(jì)算題. 【分析】(1)由于已知拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo),則可設(shè)交點(diǎn)式y(tǒng)=a(x+1)(x﹣3),然后把(0,﹣3)代入求出a即可得到拋物線(xiàn)解析式,再配成頂點(diǎn)式得到M點(diǎn)坐標(biāo); (2)觀察函數(shù)圖象,寫(xiě)出拋物線(xiàn)在x軸上方部分所對(duì)應(yīng)的自變量的范圍即可; (3)根據(jù)三角形面積公式計(jì)算△ABC的面積,利用S△BCM=S梯形OCMD+S△BMD﹣S△BOC計(jì)算△BCM的面積. 【解答】解:(1)設(shè)拋物線(xiàn)解析式為y=a(x+1)(x﹣3), ∵拋物線(xiàn)過(guò)點(diǎn)(0,﹣3), ∴﹣3=a(0+1)(0﹣3), ∴a=1, ∴拋物線(xiàn)解析式為y=(x+1)(x﹣3),即y=x2﹣2x﹣3, ∵y=x2﹣2x﹣3=(x﹣1)2﹣4, ∴頂點(diǎn)M(1,﹣4); (2)x<﹣1或x>3; (3)如圖,連接BC、BM、CM,作MD⊥x軸于D, S△BCM=S梯形OCMD+S△BMD﹣S△BOC=(3+4)1+24﹣33=3 S△ABC=43=6. 【點(diǎn)評(píng)】本題考查了拋物線(xiàn)與x軸的交點(diǎn):從二次函數(shù)的交點(diǎn)式y(tǒng)=a(x﹣x1)(x﹣x2)(a,b,c是常數(shù),a≠0)可直接得到拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo)(x1,0),(x2,0).也考查了待定系數(shù)法求拋物線(xiàn)解析式和三角形面積公式.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
4 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 營(yíng)口市 大石橋市 2016 九年級(jí) 段考 數(shù)學(xué)試卷 答案 解析
鏈接地址:http://kudomayuko.com/p-2882796.html