營(yíng)口市大石橋市2016屆九年級(jí)上期中數(shù)學(xué)試卷含答案解析.doc
《營(yíng)口市大石橋市2016屆九年級(jí)上期中數(shù)學(xué)試卷含答案解析.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《營(yíng)口市大石橋市2016屆九年級(jí)上期中數(shù)學(xué)試卷含答案解析.doc(26頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2015-2016學(xué)年遼寧省營(yíng)口市大石橋市九年級(jí)(上)期中數(shù)學(xué)試卷 一、選擇題(每題3分,共30分) 1.下列圖形是中心對(duì)稱圖形而不是軸對(duì)稱圖形的是( ) A. B. C. D. 2.下列關(guān)于x的一元二次方程有實(shí)數(shù)根的是( ) A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0 3.已知如圖⊙O的直徑為10,圓心O到弦AB的距離OM的長(zhǎng)為3,則弦AB的長(zhǎng)是( ) A.4 B.6 C.7 D.8 4.拋物線y=x2先向右平移1個(gè)單位,再向上平移3個(gè)單位,得到新的拋物線解析式是( ) A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3 5.已知點(diǎn)O為△ABC的外心,若∠A=80,則∠BOC的度數(shù)為( ) A.40 B.80 C.160 D.120 6.如圖,在長(zhǎng)為100米,寬為80米的矩形場(chǎng)地上修建兩條寬度相等且互相垂直的道路,剩余部分進(jìn)行綠化,要使綠化面積為7644米2,則道路的寬應(yīng)為多少米?設(shè)道路的寬為x米,則可列方程為( ) A.10080﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644 C.(100﹣x)(80﹣x)=7644 D.100x+80x=356 7.若點(diǎn)A(2,m)在拋物線y=x2上,則m的值為( ) A.2 B.2 C.4 D.4 8.如圖,小華同學(xué)設(shè)計(jì)了一個(gè)圓直徑的測(cè)量器,標(biāo)有刻度的尺子OA,OB在0點(diǎn)釘在一起,并使它們保持垂直,在測(cè)直徑時(shí),把0點(diǎn)靠在圓周上,讀得刻度OE=8個(gè)單位,OF=6個(gè)單位,則圓的直徑為( ) A.12個(gè)單位 B.10個(gè)單位 C.4個(gè)單位 D.15個(gè)單位 9.已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,對(duì)稱軸是直線.則下列結(jié)論中,正確的是( ) A.a(chǎn)<0 B.c<﹣1 C.a(chǎn)﹣b+c<0 D.2a+3b=0 10.如圖,在正方形ABCD中,E為DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90得到△DCF,連接EF,則∠EFC的度數(shù)為( ) A.25 B.30 C.45 D.60 二、填空題(每小題3分,共24分.) 11.已知函數(shù),當(dāng)m=__________時(shí),它是二次函數(shù). 12.拋物線y=﹣4x2+8x﹣3的開(kāi)口方向向__________,對(duì)稱軸是__________,最高點(diǎn)的坐標(biāo)是__________,函數(shù)值的最大值是__________. 13.若2x2+3與2x2﹣4互為相反數(shù),則x為_(kāi)_________. 14.已知等腰△ABC的三個(gè)頂點(diǎn)都在半徑為5的⊙O上,如果底邊BC的長(zhǎng)為8,那么BC邊上的高為_(kāi)_________. 15.如圖,在同心圓⊙O中,AB是大圓的直徑,AC是大圓的弦,AC與小圓相切于點(diǎn)D,若小圓的半徑為3cm,則BC=__________cm. 16.已知拋物線y=ax2﹣2ax+c與x軸一個(gè)交點(diǎn)的坐標(biāo)為(﹣1,0),則一元二次方程ax2﹣2ax+c=0的根為_(kāi)_________. 17.如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=5,則△PCD的周長(zhǎng)為_(kāi)_________. 18.如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過(guò)點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為_(kāi)_________. 三、解答下列各題(共96分) 19.先化簡(jiǎn),再求值:(﹣),其中,a是方程x2+3x+1=0的根. 20.如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù). 21.(13分)如圖,有一座拋物線形拱橋,已知橋下在正常水位AB時(shí),水面寬8m,水位上升3m,就達(dá)到警戒水位CD,這時(shí)水面寬4m,若洪水到來(lái)時(shí),水位以每小時(shí)0.2m的速度上升,求水過(guò)警戒水位后幾小時(shí)淹到橋拱頂. 22.某種電腦病毒傳播非???,如果一臺(tái)電腦被感染,經(jīng)過(guò)兩輪感染后就會(huì)有81臺(tái)電腦被感染.請(qǐng)你用學(xué)過(guò)的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,3輪感染后,被感染的電腦會(huì)不會(huì)超過(guò)700臺(tái)? 23.如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E. (1)求證:AB=AC; (2)求證:DE為⊙O的切線; (3)若⊙O的半徑為5,∠BAC=60,求DE的長(zhǎng). 24.某商店經(jīng)營(yíng)兒童益智玩具,已知成批購(gòu)進(jìn)時(shí)的單價(jià)是20元.調(diào)查發(fā)現(xiàn):銷(xiāo)售單價(jià)是30元時(shí),月銷(xiāo)售量是230件,而銷(xiāo)售單價(jià)每上漲1元,月銷(xiāo)售量就減少10件,但每件玩具售價(jià)不能高于40元.設(shè)每件玩具的銷(xiāo)售單價(jià)上漲了x元時(shí)(x為正整數(shù)),月銷(xiāo)售利潤(rùn)為y元. (1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍. (2)每件玩具的售價(jià)定為多少元時(shí),月銷(xiāo)售利潤(rùn)恰為2520元? (3)每件玩具的售價(jià)定為多少元時(shí)可使月銷(xiāo)售利潤(rùn)最大?最大的月利潤(rùn)是多少? 25.(14分)有這樣一道習(xí)題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,過(guò)Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.說(shuō)明:RP=RQ. 請(qǐng)?zhí)骄肯铝凶兓? 變化一:交換題設(shè)與結(jié)論. 已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,R是OA的延長(zhǎng)線上一點(diǎn),且RP=RQ. 求證:RQ為⊙O的切線. 變化二:運(yùn)動(dòng)探究: (1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷) (2)如圖3,如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過(guò)點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么? (3)若OA所在的直線向上平移且與⊙O無(wú)公共點(diǎn),請(qǐng)你根據(jù)原題中的條件完成圖4,并判斷結(jié)論是否還成立?(只需交待判斷) 26.(14分)如圖,拋物線y=x2+4x+3交x軸于A,B兩點(diǎn)(A在B左側(cè)),交y軸于點(diǎn)C.已知一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)A,C. (1)求拋物線的對(duì)稱軸和一次函數(shù)的解析式; (2)根據(jù)圖象,寫(xiě)出滿足kx+b>x2+4x+3的x的取值范圍; (3)在平面直角坐標(biāo)系xOy中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. 2015-2016學(xué)年遼寧省營(yíng)口市大石橋市九年級(jí)(上)期中數(shù)學(xué)試卷 一、選擇題(每題3分,共30分) 1.下列圖形是中心對(duì)稱圖形而不是軸對(duì)稱圖形的是( ) A. B. C. D. 【考點(diǎn)】中心對(duì)稱圖形;軸對(duì)稱圖形. 【分析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解. 【解答】解:A、是中心對(duì)稱圖形,不是軸對(duì)稱圖形;故A正確; B、是中心對(duì)稱圖形,也是軸對(duì)稱圖形;故B錯(cuò)誤; C、是中心對(duì)稱圖形,也是軸對(duì)稱圖形;故C錯(cuò)誤; D、不是中心對(duì)稱圖形,是軸對(duì)稱圖形;故D錯(cuò)誤; 故選A. 【點(diǎn)評(píng)】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念:軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分沿對(duì)稱軸折疊后可重合;中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合. 2.下列關(guān)于x的一元二次方程有實(shí)數(shù)根的是( ) A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0 【考點(diǎn)】根的判別式. 【專題】計(jì)算題. 【分析】計(jì)算出各項(xiàng)中方程根的判別式的值,找出根的判別式的值大于等于0的方程即可. 【解答】解:A、這里a=1,b=0,c=1, ∵△=b2﹣4ac=﹣4<0, ∴方程沒(méi)有實(shí)數(shù)根,本選項(xiàng)不合題意; B、這里a=1,b=1,c=1, ∵△=b2﹣4ac=1﹣4=﹣3<0, ∴方程沒(méi)有實(shí)數(shù)根,本選項(xiàng)不合題意; C、這里a=1,b=﹣1,c=1, ∵△=b2﹣4ac=1﹣4=﹣3<0, ∴方程沒(méi)有實(shí)數(shù)根,本選項(xiàng)不合題意; D、這里a=1,b=﹣1,c=﹣1, ∵△=b2﹣4ac=1+4=5>0, ∴方程有兩個(gè)不相等實(shí)數(shù)根,本選項(xiàng)符合題意; 故選D 【點(diǎn)評(píng)】此題考查了根的判別式,熟練掌握根的判別式的意義是解本題的關(guān)鍵. 3.已知如圖⊙O的直徑為10,圓心O到弦AB的距離OM的長(zhǎng)為3,則弦AB的長(zhǎng)是( ) A.4 B.6 C.7 D.8 【考點(diǎn)】垂徑定理;勾股定理. 【分析】先根據(jù)垂徑定理求出AM=AB,再根據(jù)勾股定理求出AM的值. 【解答】解:連接OA, ∵⊙O的直徑為10, ∴OA=5, ∵圓心O到弦AB的距離OM的長(zhǎng)為3, 由垂徑定理知,點(diǎn)M是AB的中點(diǎn),AM=AB, 由勾股定理可得,AM=4,所以AB=8. 故選D. 【點(diǎn)評(píng)】本題利用了垂徑定理和勾股定理求解. 4.拋物線y=x2先向右平移1個(gè)單位,再向上平移3個(gè)單位,得到新的拋物線解析式是( ) A.y=(x+1)2+3 B.y=(x+1)2﹣3 C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+3 【考點(diǎn)】二次函數(shù)圖象與幾何變換. 【專題】探究型. 【分析】根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可. 【解答】解:由“左加右減”的原則可知,拋物線y=x2向右平移1個(gè)單位所得拋物線的解析式為:y=(x﹣1)2; 由“上加下減”的原則可知,拋物線y=(x﹣1)2向上平移3個(gè)單位所得拋物線的解析式為:y=(x﹣1)2+3. 故選D. 【點(diǎn)評(píng)】本題考查的是二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵. 5.已知點(diǎn)O為△ABC的外心,若∠A=80,則∠BOC的度數(shù)為( ) A.40 B.80 C.160 D.120 【考點(diǎn)】三角形的外接圓與外心. 【分析】根據(jù)圓周角定理得∠BOC=2∠A=160. 【解答】解:∵點(diǎn)O為△ABC的外心,∠A=80, ∴∠BOC=2∠A=160. 故選C. 【點(diǎn)評(píng)】熟練運(yùn)用圓周角定理計(jì)算,即在同圓或等圓中同弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半. 6.如圖,在長(zhǎng)為100米,寬為80米的矩形場(chǎng)地上修建兩條寬度相等且互相垂直的道路,剩余部分進(jìn)行綠化,要使綠化面積為7644米2,則道路的寬應(yīng)為多少米?設(shè)道路的寬為x米,則可列方程為( ) A.10080﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644 C.(100﹣x)(80﹣x)=7644 D.100x+80x=356 【考點(diǎn)】由實(shí)際問(wèn)題抽象出一元二次方程. 【專題】幾何圖形問(wèn)題. 【分析】把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式列方程. 【解答】解:設(shè)道路的寬應(yīng)為x米,由題意有 (100﹣x)(80﹣x)=7644, 故選C. 【點(diǎn)評(píng)】此題主要考查了由實(shí)際問(wèn)題抽象出一元二次方程,把中間修建的兩條道路分別平移到矩形地面的最上邊和最左邊是做本題的關(guān)鍵. 7.若點(diǎn)A(2,m)在拋物線y=x2上,則m的值為( ) A.2 B.2 C.4 D.4 【考點(diǎn)】二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征. 【分析】把A點(diǎn)坐標(biāo)代入拋物線解析式,可求得m. 【解答】解:∵點(diǎn)A(2,m)在拋物線y=x2上, ∴m=22=4, 故選C. 【點(diǎn)評(píng)】本題主要考查函數(shù)圖象上的點(diǎn)與函數(shù)解析式的關(guān)系,掌握函數(shù)圖象上的點(diǎn)的坐標(biāo)滿足函數(shù)解析式是解題的關(guān)鍵. 8.如圖,小華同學(xué)設(shè)計(jì)了一個(gè)圓直徑的測(cè)量器,標(biāo)有刻度的尺子OA,OB在0點(diǎn)釘在一起,并使它們保持垂直,在測(cè)直徑時(shí),把0點(diǎn)靠在圓周上,讀得刻度OE=8個(gè)單位,OF=6個(gè)單位,則圓的直徑為( ) A.12個(gè)單位 B.10個(gè)單位 C.4個(gè)單位 D.15個(gè)單位 【考點(diǎn)】圓周角定理;勾股定理. 【分析】根據(jù)圓中的有關(guān)性質(zhì)“90的圓周角所對(duì)的弦是直徑”.從而得到EF即可是直徑,根據(jù)勾股定理計(jì)算即可. 【解答】解:連接EF, ∵OE⊥OF, ∴EF是直徑, ∴EF====10. 故選:B. 【點(diǎn)評(píng)】考查了圓中的有關(guān)性質(zhì):90的圓周角所對(duì)的弦是直徑.此性質(zhì)是判斷直徑的一個(gè)有效方法,也是構(gòu)造直角三角形的一個(gè)常用方法. 9.已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標(biāo)系中的位置如圖所示,對(duì)稱軸是直線.則下列結(jié)論中,正確的是( ) A.a(chǎn)<0 B.c<﹣1 C.a(chǎn)﹣b+c<0 D.2a+3b=0 【考點(diǎn)】二次函數(shù)圖象與系數(shù)的關(guān)系. 【分析】根據(jù)二次函數(shù)的圖象開(kāi)口方向即可判斷A;二次函數(shù)的圖象與y軸的交點(diǎn)位置即可判斷B;把x=﹣1代入二次函數(shù)的解析式即可判斷C;根據(jù)二次函數(shù)的對(duì)稱軸即可求出D. 【解答】解:A、∵二次函數(shù)的圖象開(kāi)口向上, ∴a>0,故本選項(xiàng)錯(cuò)誤; B、∵二次函數(shù)的圖象與y軸的交點(diǎn)在點(diǎn)(0,﹣1)的上方, ∴c>﹣1,故本選項(xiàng)錯(cuò)誤; C、把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c, ∵從二次函數(shù)的圖象可知當(dāng)x=﹣1時(shí),y>0, 即a﹣b+c>0,故本選項(xiàng)錯(cuò)誤; D、∵二次函數(shù)的圖象的對(duì)稱軸是直線, ∴﹣=, ﹣3b=2a, 2a+3b=0,故本選項(xiàng)正確; 故選D. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的圖象和系數(shù)的關(guān)系,題目具有一定的代表性,是一道比較好的題目,注意用了數(shù)形結(jié)合思想,二次函數(shù)的圖象開(kāi)口方向決定a的符號(hào),二次函數(shù)的圖形與y軸的交點(diǎn)位置決定c的符號(hào),根據(jù)二次函數(shù)的圖象的對(duì)稱軸是直線x=得出﹣=,把x=﹣1代入y=ax2+bx+c(a≠0)得出y=a﹣b+c等等. 10.如圖,在正方形ABCD中,E為DC邊上的點(diǎn),連接BE,將△BCE繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90得到△DCF,連接EF,則∠EFC的度數(shù)為( ) A.25 B.30 C.45 D.60 【考點(diǎn)】旋轉(zhuǎn)的性質(zhì). 【分析】由旋轉(zhuǎn)前后的對(duì)應(yīng)角相等可知,CF=CE;一個(gè)特殊三角形△ECF為等腰直角三角形,可知∠EFC的度數(shù). 【解答】解:∵△DCF是△BCE旋轉(zhuǎn)以后得到的圖形, ∴CF=CE. 又∵∠ECF=90, ∴∠EFC=∠FEC=(180﹣∠ECF)=(180﹣90)=45. 故選:C. 【點(diǎn)評(píng)】本題考查了圖形的旋轉(zhuǎn)變化,由旋轉(zhuǎn)的性質(zhì)得出△ECF為等腰直角三角形是解題的關(guān)鍵. 二、填空題(每小題3分,共24分.) 11.已知函數(shù),當(dāng)m=﹣1時(shí),它是二次函數(shù). 【考點(diǎn)】二次函數(shù)的定義. 【分析】根據(jù)二次函數(shù)的定義列出關(guān)于m的方程,求出m的值即可. 【解答】解:∵y=(m﹣1)xm2+1是二次函數(shù), ∴m2+1=2, ∴m=﹣1或m=1(舍去此時(shí)m﹣1=0). 故答案為:﹣1. 【點(diǎn)評(píng)】此題考查了二次函數(shù)的定義,關(guān)鍵是根據(jù)定義列出方程,在解題時(shí)要注意m﹣1≠0. 12.拋物線y=﹣4x2+8x﹣3的開(kāi)口方向向下,對(duì)稱軸是直線x=1,最高點(diǎn)的坐標(biāo)是(1,1),函數(shù)值的最大值是1. 【考點(diǎn)】二次函數(shù)的性質(zhì). 【分析】把拋物線解析式整理成頂點(diǎn)式形式,然后分別解答即可. 【解答】解:∵y=﹣4x2+8x﹣3=﹣4(x2﹣2x+1)+1=﹣4(x﹣1)2+1, ∴開(kāi)口方向向下,對(duì)稱軸是直線x=1,最高點(diǎn)的坐標(biāo)是(1,1),函數(shù)值的最大值是1. 故答案為:下,直線x=1,(1,1),1. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的性質(zhì),主要是開(kāi)口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo)的求解,把函數(shù)解析式整理成頂點(diǎn)式求解更簡(jiǎn)便. 13.若2x2+3與2x2﹣4互為相反數(shù),則x為. 【考點(diǎn)】解一元二次方程-直接開(kāi)平方法. 【分析】根據(jù)有理數(shù)加法法則可得2x2+3+2x2﹣4=0,再解一元二次方程即可. 【解答】解:由題意得:2x2+3+2x2﹣4=0, 4x2﹣1=0, 4x2=1, x=, 故答案為:. 【點(diǎn)評(píng)】此題主要考查了直接開(kāi)平方法解一元二次方程,解這類(lèi)問(wèn)題要移項(xiàng),把所含未知數(shù)的項(xiàng)移到等號(hào)的左邊,把常數(shù)項(xiàng)移項(xiàng)等號(hào)的右邊,化成x2=a(a≥0)的形式,利用數(shù)的開(kāi)方直接求解. 14.已知等腰△ABC的三個(gè)頂點(diǎn)都在半徑為5的⊙O上,如果底邊BC的長(zhǎng)為8,那么BC邊上的高為8或2. 【考點(diǎn)】垂徑定理;等腰三角形的性質(zhì);勾股定理. 【分析】分為兩種情況:①當(dāng)圓心在三角形的內(nèi)部時(shí),②當(dāng)圓心在三角形的外部時(shí)從圓心向BC引垂線,交點(diǎn)為D,則根據(jù)垂徑定理和勾股定理可求出OD的長(zhǎng),即可求出高AD. 【解答】解:分為兩種情況:①如圖1,當(dāng)圓心在三角形的內(nèi)部時(shí), 連接AO并延長(zhǎng)交BC于D點(diǎn),連接OB, ∵AB=AC, ∴=, 根據(jù)垂徑定理得AD⊥BC, 則BD=4, 在Rt△ODB中,由勾股定理得:OB2=OD2+BD2, ∵OB=5,BD=4, ∴OD=3, ∴高AD=5+3=8; ②當(dāng)圓心在三角形的外部時(shí),如圖2, 三角形底邊BC上的高AD=5﹣3=2. 所以BC邊上的高是8或2, 故答案為:8或2. 【點(diǎn)評(píng)】本題綜合考查了垂徑定理和勾股定理在圓中的應(yīng)用,因三角形與圓心的位置不明確,注意分情況討論. 15.如圖,在同心圓⊙O中,AB是大圓的直徑,AC是大圓的弦,AC與小圓相切于點(diǎn)D,若小圓的半徑為3cm,則BC=6cm. 【考點(diǎn)】切線的性質(zhì). 【分析】連接OD,因?yàn)镈點(diǎn)小圓的切線,故OD⊥AC;根據(jù)垂徑定理可證D點(diǎn)為AC的中點(diǎn),又O點(diǎn)為AB的中點(diǎn),所以O(shè)D為△ABC的中位線;又因?yàn)镺D=3,根據(jù)中位線定理,可知BC=2OD=6cm. 【解答】解:連接OD, 根據(jù)題意,D點(diǎn)為小圓的切點(diǎn), 故OD⊥AC, 在大圓中,有D點(diǎn)為AC的中點(diǎn). 所以O(shè)D為△ABC的中線, 且OD=3cm, 故BC=2OD=6cm. 【點(diǎn)評(píng)】本題考查了切線和垂徑定理以及三角形中位線定理在圓中的綜合運(yùn)用. 16.已知拋物線y=ax2﹣2ax+c與x軸一個(gè)交點(diǎn)的坐標(biāo)為(﹣1,0),則一元二次方程ax2﹣2ax+c=0的根為﹣1,3. 【考點(diǎn)】拋物線與x軸的交點(diǎn). 【分析】將x=﹣1,y=0代入拋物線的解析式可得到c=﹣3a,然后將c=﹣3a代入方程,最后利用因式分解法求解即可. 【解答】解法一:將x=﹣1,y=0代入y=ax2﹣2ax+c得:a+2a+c=0. 解得:c=﹣3a. 將c=﹣3a代入方程得:ax2﹣2ax﹣3a=0. ∴a(x2﹣2x﹣3)=0. ∴a(x+1)(x﹣3)=0. ∴x1=﹣1,x2=3. 解法二:已知拋物線的對(duì)稱軸為x==1,又拋物線與x軸一個(gè)交點(diǎn)的坐標(biāo)為(﹣1,0),則根據(jù)對(duì)稱性可知另一個(gè)交點(diǎn)坐標(biāo)為(3,0);故而ax2﹣2ax+c=0的兩個(gè)根為﹣1,3 故答案為:﹣1,3. 【點(diǎn)評(píng)】本題主要考查的是拋物線與x軸的交點(diǎn),求得a與c的關(guān)系是解題的關(guān)鍵. 17.如圖,P為⊙O外一點(diǎn),PA、PB分別切⊙O于A、B,CD切⊙O于點(diǎn)E,分別交PA、PB于點(diǎn)C、D,若PA=5,則△PCD的周長(zhǎng)為10. 【考點(diǎn)】切線長(zhǎng)定理. 【分析】由于CA、CE,DE、DB都是⊙O的切線,可由切線長(zhǎng)定理將△PCD的周長(zhǎng)轉(zhuǎn)換為PA、PB的長(zhǎng). 【解答】解:∵PA、PB切⊙O于A、B, ∴PA=PB=5; 同理,可得:EC=CA,DE=DB; ∴△PDC的周長(zhǎng)=PC+CE+DE+DP=PC+AC+PD+DB=PA+PB=2PA=10. 即△PCD的周長(zhǎng)是10. 【點(diǎn)評(píng)】此題主要考查的是切線長(zhǎng)定理的應(yīng)用.能夠?qū)ⅰ鱌CD的周長(zhǎng)轉(zhuǎn)換為切線PA、PB的長(zhǎng)是解答此題的關(guān)鍵. 18.如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過(guò)點(diǎn)A(﹣6,0)和原點(diǎn)O(0,0),它的頂點(diǎn)為P,它的對(duì)稱軸與拋物線y=x2交于點(diǎn)Q,則圖中陰影部分的面積為. 【考點(diǎn)】二次函數(shù)圖象與幾何變換. 【專題】壓軸題. 【分析】根據(jù)點(diǎn)O與點(diǎn)A的坐標(biāo)求出平移后的拋物線的對(duì)稱軸,然后求出點(diǎn)P的坐標(biāo),過(guò)點(diǎn)P作PM⊥y軸于點(diǎn)M,根據(jù)拋物線的對(duì)稱性可知陰影部分的面積等于矩形NPMO的面積,然后求解即可. 【解答】解:過(guò)點(diǎn)P作PM⊥y軸于點(diǎn)M, ∵拋物線平移后經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(﹣6,0), ∴平移后的拋物線對(duì)稱軸為x=﹣3, 得出二次函數(shù)解析式為:y=(x+3)2+h, 將(﹣6,0)代入得出: 0=(﹣6+3)2+h, 解得:h=﹣, ∴點(diǎn)P的坐標(biāo)是(﹣3,﹣), 根據(jù)拋物線的對(duì)稱性可知,陰影部分的面積等于矩形NPMO的面積, ∴S=|﹣3||﹣|=. 故答案為:. 【點(diǎn)評(píng)】本題考查了二次函數(shù)的問(wèn)題,根據(jù)二次函數(shù)的性質(zhì)求出平移后的拋物線的對(duì)稱軸的解析式,并對(duì)陰影部分的面積進(jìn)行轉(zhuǎn)換是解題的關(guān)鍵. 三、解答下列各題(共96分) 19.先化簡(jiǎn),再求值:(﹣),其中,a是方程x2+3x+1=0的根. 【考點(diǎn)】分式的化簡(jiǎn)求值;一元二次方程的解. 【專題】計(jì)算題. 【分析】原式括號(hào)中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡(jiǎn)結(jié)果,將a代入方程求出a2+3a的值,代入計(jì)算即可求出值. 【解答】解:原式=[+] =(+)? =? =, ∵a是方程x2+3x+1=0的根, ∴a2+3a=﹣1, 則原式=﹣. 【點(diǎn)評(píng)】此題考查了分式的化簡(jiǎn)求值,熟練掌握運(yùn)算法則是解本題的關(guān)鍵. 20.如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=5,PB=12,PC=13,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,求點(diǎn)P與點(diǎn)P′之間的距離及∠APB的度數(shù). 【考點(diǎn)】旋轉(zhuǎn)的性質(zhì);勾股定理的逆定理. 【專題】計(jì)算題. 【分析】先根據(jù)等邊三角形的性質(zhì)得AB=AC,∠BAC=60,再利用旋轉(zhuǎn)的性質(zhì)得∠P′AP=∠BAC=60,AP′=AP,BP′=CP=13,于是可判斷△AP′P為等邊三角形,得到PP′=AP=5,∠APP′=60,接著根據(jù)勾股定理的逆定理證明△BPP′為直角三角形,且∠BPP′=90,然后利用∠APB=∠APP′+∠BPP′求出∠APB的度數(shù). 【解答】解:∵△ABC為等邊三角形, ∴AB=AC,∠BAC=60, ∵△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB, ∴∠P′AP=∠BAC=60,AP′=AP,BP′=CP=13, ∴△AP′P為等邊三角形, ∴PP′=AP=5,∠APP′=60, 在△BPP′中,∵PP′=5,BP=12,BP′=13, ∴PP′2+BP2=BP′2, ∴△BPP′為直角三角形,∠BPP′=90, ∴∠APB=∠APP′+∠BPP′=60+90=150. 答:點(diǎn)P與點(diǎn)P′之間的距離為5,∠APB的度數(shù)為150. 【點(diǎn)評(píng)】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的判定與性質(zhì)和勾股定理的逆定理. 21.(13分)如圖,有一座拋物線形拱橋,已知橋下在正常水位AB時(shí),水面寬8m,水位上升3m,就達(dá)到警戒水位CD,這時(shí)水面寬4m,若洪水到來(lái)時(shí),水位以每小時(shí)0.2m的速度上升,求水過(guò)警戒水位后幾小時(shí)淹到橋拱頂. 【考點(diǎn)】二次函數(shù)的應(yīng)用. 【分析】以AB為x軸,中點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,已知B、D可得y的解析式,從而求出OM的值.又因?yàn)镸N=OM﹣ON,故可求t的值. 【解答】解:根據(jù)題意建立坐標(biāo)系如下: 設(shè)拋物線解析式為:y=ax2+h, 又∵B(4,0),D(2,3) ∴, 解得:, ∴y=﹣x2+4, ∴M(0,4)即OM=4m ∴MN=OM﹣ON=1, 則t==5(小時(shí)). 答:水過(guò)警戒線后5小時(shí)淹到拱橋頂. 【點(diǎn)評(píng)】本題考查二次函數(shù)的實(shí)際應(yīng)用.此題為數(shù)學(xué)建模題,借助二次函數(shù)解決實(shí)際問(wèn)題. 22.某種電腦病毒傳播非???,如果一臺(tái)電腦被感染,經(jīng)過(guò)兩輪感染后就會(huì)有81臺(tái)電腦被感染.請(qǐng)你用學(xué)過(guò)的知識(shí)分析,每輪感染中平均一臺(tái)電腦會(huì)感染幾臺(tái)電腦?若病毒得不到有效控制,3輪感染后,被感染的電腦會(huì)不會(huì)超過(guò)700臺(tái)? 【考點(diǎn)】一元二次方程的應(yīng)用. 【專題】其他問(wèn)題. 【分析】本題可設(shè)每輪感染中平均一臺(tái)會(huì)感染x臺(tái)電腦,則第一輪后共有(1+x)臺(tái)被感染,第二輪后共有(1+x)+x(1+x)即(1+x)2臺(tái)被感染,利用方程即可求出x的值,并且3輪后共有(1+x)3臺(tái)被感染,比較該數(shù)同700的大小,即可作出判斷. 【解答】解:設(shè)每輪感染中平均每一臺(tái)電腦會(huì)感染x臺(tái)電腦,依題意得:1+x+(1+x)x=81, 整理得(1+x)2=81, 則x+1=9或x+1=﹣9, 解得x1=8,x2=﹣10(舍去), ∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700. 答:每輪感染中平均每一臺(tái)電腦會(huì)感染8臺(tái)電腦,3輪感染后,被感染的電腦會(huì)超過(guò)700臺(tái). 【點(diǎn)評(píng)】本題只需仔細(xì)分析題意,利用方程即可解決問(wèn)題.找到關(guān)鍵描述語(yǔ),找到等量關(guān)系準(zhǔn)確的列出方程是解決問(wèn)題的關(guān)鍵. 23.如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連接AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E. (1)求證:AB=AC; (2)求證:DE為⊙O的切線; (3)若⊙O的半徑為5,∠BAC=60,求DE的長(zhǎng). 【考點(diǎn)】切線的判定;圓周角定理. 【專題】計(jì)算題;證明題. 【分析】(1)根據(jù)垂直平分線的判斷方法與性質(zhì)易得AD是BC的垂直平分線,故可得AB=AC; (2)連接OD,由平行線的性質(zhì),易得OD⊥DE,且DE過(guò)圓周上一點(diǎn)D故DE為⊙O的切線; (3)由AB=AC,∠BAC=60知△ABC是等邊三角形,根據(jù)等邊三角形的性質(zhì),可得AB=BC=10,CD=BC=5;又∠C=60,借助三角函數(shù)的定義,可得答案. 【解答】(1)證明:∵AB是⊙O的直徑, ∴∠ADB=90; ∵BD=CD, ∴AD是BC的垂直平分線. ∴AB=AC. (2)證明:連接OD, ∵點(diǎn)O、D分別是AB、BC的中點(diǎn), ∴OD∥AC. ∵DE⊥AC, ∴OD⊥DE. ∴DE為⊙O的切線. (3)解:由AB=AC,∠BAC=60知△ABC是等邊三角形, ∵⊙O的半徑為5, ∴AB=BC=10,CD=BC=5. ∵∠C=60, ∴DE=CD?sin60=. 【點(diǎn)評(píng)】本題考查切線的判定,線段相等的證明及線段長(zhǎng)度的求法,要求學(xué)生掌握常見(jiàn)的解題方法,并能結(jié)合圖形選擇簡(jiǎn)單的方法解題. 24.某商店經(jīng)營(yíng)兒童益智玩具,已知成批購(gòu)進(jìn)時(shí)的單價(jià)是20元.調(diào)查發(fā)現(xiàn):銷(xiāo)售單價(jià)是30元時(shí),月銷(xiāo)售量是230件,而銷(xiāo)售單價(jià)每上漲1元,月銷(xiāo)售量就減少10件,但每件玩具售價(jià)不能高于40元.設(shè)每件玩具的銷(xiāo)售單價(jià)上漲了x元時(shí)(x為正整數(shù)),月銷(xiāo)售利潤(rùn)為y元. (1)求y與x的函數(shù)關(guān)系式并直接寫(xiě)出自變量x的取值范圍. (2)每件玩具的售價(jià)定為多少元時(shí),月銷(xiāo)售利潤(rùn)恰為2520元? (3)每件玩具的售價(jià)定為多少元時(shí)可使月銷(xiāo)售利潤(rùn)最大?最大的月利潤(rùn)是多少? 【考點(diǎn)】二次函數(shù)的應(yīng)用;一元二次方程的應(yīng)用. 【專題】銷(xiāo)售問(wèn)題;壓軸題. 【分析】(1)根據(jù)題意知一件玩具的利潤(rùn)為(30+x﹣20)元,月銷(xiāo)售量為(230﹣10x),然后根據(jù)月銷(xiāo)售利潤(rùn)=一件玩具的利潤(rùn)月銷(xiāo)售量即可求出函數(shù)關(guān)系式. (2)把y=2520時(shí)代入y=﹣10x2+130x+2300中,求出x的值即可. (3)把y=﹣10x2+130x+2300化成頂點(diǎn)式,求得當(dāng)x=6.5時(shí),y有最大值,再根據(jù)0<x≤10且x為正整數(shù),分別計(jì)算出當(dāng)x=6和x=7時(shí)y的值即可. 【解答】解:(1)根據(jù)題意得: y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300, 自變量x的取值范圍是:0<x≤10且x為正整數(shù); (2)當(dāng)y=2520時(shí),得﹣10x2+130x+2300=2520, 解得x1=2,x2=11(不合題意,舍去) 當(dāng)x=2時(shí),30+x=32(元) 答:每件玩具的售價(jià)定為32元時(shí),月銷(xiāo)售利潤(rùn)恰為2520元. (3)根據(jù)題意得: y=﹣10x2+130x+2300 =﹣10(x﹣6.5)2+2722.5, ∵a=﹣10<0, ∴當(dāng)x=6.5時(shí),y有最大值為2722.5, ∵0<x≤10且x為正整數(shù), ∴當(dāng)x=6時(shí),30+x=36,y=2720(元), 當(dāng)x=7時(shí),30+x=37,y=2720(元), 答:每件玩具的售價(jià)定為36元或37元時(shí),每個(gè)月可獲得最大利潤(rùn),最大的月利潤(rùn)是2720元. 【點(diǎn)評(píng)】本題主要考查了二次函數(shù)的實(shí)際應(yīng)用,解題的關(guān)鍵是分析題意,找到關(guān)鍵描述語(yǔ),求出函數(shù)的解析式,用到的知識(shí)點(diǎn)是二次函數(shù)的性質(zhì)和解一元二次方程. 25.(14分)有這樣一道習(xí)題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,過(guò)Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.說(shuō)明:RP=RQ. 請(qǐng)?zhí)骄肯铝凶兓? 變化一:交換題設(shè)與結(jié)論. 已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,R是OA的延長(zhǎng)線上一點(diǎn),且RP=RQ. 求證:RQ為⊙O的切線. 變化二:運(yùn)動(dòng)探究: (1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷) (2)如圖3,如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過(guò)點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么? (3)若OA所在的直線向上平移且與⊙O無(wú)公共點(diǎn),請(qǐng)你根據(jù)原題中的條件完成圖4,并判斷結(jié)論是否還成立?(只需交待判斷) 【考點(diǎn)】切線的判定與性質(zhì). 【專題】證明題. 【分析】原命題的證明:連接OQ,利用RQ為⊙O的切線,得出∠OQB+∠PQR=90,根據(jù)半徑OB=OQ及OA⊥OB,得出∠OQB=∠OBQ,∠OBQ+∠BPO=90,從而得∠PQR=∠QPR,證明結(jié)論; 變化一的證明:與原命題的證明過(guò)程相反,由RP=RQ,可知∠PQR=∠QPR=∠BPO,再利用互余關(guān)系將角進(jìn)行轉(zhuǎn)化,證明∠OQB+∠PQR=90,即∠OQR=90即可; 變化二的證明:連接OQ,仿照原命題的證明方法進(jìn)行. 【解答】證明:連接OQ, ∵RQ為⊙O的切線, ∴∠OQR=∠OQB+∠PQR=90, 又∵OB=OQ,OA⊥OB, ∴∠OQB=∠OBQ,∠OBQ+∠BPO=90, ∴∠PQR=∠BPO, 而∠BPO=∠QPR, ∴∠PQR=∠QPR, ∴RP=RQ; 變化一: 證明:∵RP=RQ,∴∠PQR=∠QPR=∠BPO, 又∵OB=OQ,OA⊥OB, ∴∠OQB=∠OBQ,∠OBQ+∠BPO=90, ∴∠OQB+∠PQR=90,即∠OQR=90, ∴RQ為⊙O的切線; 變化二. (1)若OA向上平移,變化一中的結(jié)論還成立; (2)原題中的結(jié)論還成立. 理由:連接OQ, ∵RQ為⊙O的切線, ∴∠OQR=90,∠BQO+∠RQP=90, 又∵OB=OQ,OP⊥OB, ∴∠OQB=∠OBQ,∠OBQ+∠BPO=90, ∴∠RQP=∠BPO, ∴RP=RQ; (3)原題中的結(jié)論還成立,如圖. 【點(diǎn)評(píng)】本題考查了切線的判定與性質(zhì).關(guān)鍵是利用圓中的等腰三角形,對(duì)頂角相等,互余關(guān)系的角證明角相等. 26.(14分)如圖,拋物線y=x2+4x+3交x軸于A,B兩點(diǎn)(A在B左側(cè)),交y軸于點(diǎn)C.已知一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)A,C. (1)求拋物線的對(duì)稱軸和一次函數(shù)的解析式; (2)根據(jù)圖象,寫(xiě)出滿足kx+b>x2+4x+3的x的取值范圍; (3)在平面直角坐標(biāo)系xOy中是否存在點(diǎn)P,與A、B、C三點(diǎn)構(gòu)成一個(gè)平行四邊形?若存在,請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. 【考點(diǎn)】二次函數(shù)綜合題. 【分析】(1)首先把y=x2+4x+3化成頂點(diǎn)坐標(biāo)式,即可求出拋物線的對(duì)稱軸,求出點(diǎn)A、點(diǎn)C的坐標(biāo),利用待定系數(shù)法求出一次函數(shù)的解析式; (2)根據(jù)圖象直接寫(xiě)出滿足條件的x的取值范圍; (3)分別討論點(diǎn)P在第一象限、第二象限以及第四象限三種情況,利用平行四邊形的特征求出點(diǎn)P的坐標(biāo). 【解答】解:(1)∵y=x2+4x+3=x2+4x+4﹣3=(x+2)2﹣3, ∴拋物線的對(duì)稱軸是x=﹣2, 令y=x2+4x+3=0, 解得x1=﹣3,x2=﹣1, ∴點(diǎn)A坐標(biāo)為(﹣3,0),點(diǎn)B坐標(biāo)為(﹣1,0),點(diǎn)C坐標(biāo)為(0,3), 設(shè)一次函數(shù)的解析式為y=kx+b, 則, 解得k=1,b=3, ∴一次函數(shù)解析式為y=x+3; (2)根據(jù)圖象可知,當(dāng)﹣3<x<0時(shí)kx+b>x2+4x+3; (3)存在點(diǎn)P,共有三種情況: 如圖1,當(dāng)P點(diǎn)在第一象限時(shí), PC∥AB,且AB=PC, ∵AB=2, ∴PC=2, ∵點(diǎn)C坐標(biāo)為(0,3), ∴點(diǎn)P坐標(biāo)為(2,3); 如圖2,當(dāng)點(diǎn)P位于第二象限時(shí), PC∥AB,且AB=PC, ∵AB=2, ∴PC=2, ∵點(diǎn)C坐標(biāo)為(0,3), ∴點(diǎn)P坐標(biāo)為(﹣2,3); 如圖3,當(dāng)點(diǎn)P位于第三象限時(shí), ∵四邊形APBC是平行四邊形, ∴AP∥BC,AP=BC, ∴線段AP可以看成BC向下平移3個(gè)單位向左平移3個(gè)單位得到, ∵點(diǎn)B坐標(biāo)為(﹣1,0), ∴點(diǎn)P坐標(biāo)為(﹣4,﹣3); 綜上所述,點(diǎn)P坐標(biāo)為(2,3)或(﹣2,3)或(﹣4,﹣3). 【點(diǎn)評(píng)】本題主要考查了二次函數(shù)綜合題,此題涉及到二次函數(shù)的性質(zhì)、直線與拋物線的交點(diǎn)問(wèn)題、平行四邊形的判定與性質(zhì)等知識(shí),解答此題需要根據(jù)平行四邊形的特征進(jìn)行分類(lèi)討論,此題難度不大.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
4 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 營(yíng)口市 大石橋市 2016 九年級(jí) 期中 數(shù)學(xué)試卷 答案 解析
鏈接地址:http://kudomayuko.com/p-2901947.html