壓縮包內(nèi)含有CAD圖紙和說明書,均可直接下載獲得文件,所見所得,電腦查看更方便。Q 197216396 或 11970985
年產(chǎn)2.4萬噸鎂磚生產(chǎn)車間設(shè)計
摘 要
耐火材料,根據(jù)國際標(biāo)準(zhǔn)是指在高溫環(huán)境下其化學(xué)與物理性質(zhì)穩(wěn)定并能正常使用的非金屬 ( 并不排除含有一定比例的金屬) 材料與產(chǎn)品。當(dāng)前鋼鐵行業(yè)發(fā)展迅速,耐火材料作為鋼鐵等行業(yè)重要的輔助性材料,在其發(fā)展中起著舉足重輕的作用,隨著冶金行業(yè)的逐步發(fā)展,耐火材料工藝得到了不斷的提高,尤其是鎂質(zhì)耐火材料。鎂質(zhì)耐火材料是以MgO為主成分以方鎂石為主晶相的耐火材料。目前,鎂質(zhì)耐火材料的主要品種有普通鎂磚、直接結(jié)合鎂磚、鎂鈣磚、鎂硅磚、鎂鋁磚、鎂鉻磚以及鎂碳磚。另外,還有其他不經(jīng)燒結(jié)的不燒鎂質(zhì)制品和不定形鎂質(zhì)耐火材料。普通鎂磚是以燒結(jié)鎂石為原料,經(jīng)燒結(jié)制成的,含MgO 91%左右,以硅酸鹽結(jié)合的鎂質(zhì)耐火制品。直接結(jié)合鎂磚是以高純燒結(jié)鎂砂為原料,經(jīng)燒結(jié)制成,含MgO 95%以上,是方鎂石晶間直接結(jié)合的鎂質(zhì)耐火制品。本次設(shè)計是14000噸普通鎂磚MZ—91和10000噸普通鎂磚MZ—95的生產(chǎn)車間設(shè)計。設(shè)計敘述了鎂磚的使用條件及其生產(chǎn)工藝?yán)碚摶A(chǔ),輔助原料的要求、加工處理方法、產(chǎn)品的生產(chǎn)工藝流程、物料平衡計算結(jié)果、生產(chǎn)設(shè)備的選型、燒成設(shè)備的選型計算以及生產(chǎn)技術(shù)檢查系統(tǒng)的說明和設(shè)計的主要特點(diǎn)。
關(guān)鍵詞:耐火材料,鎂磚,生產(chǎn)工藝,車間,設(shè)計
Engineering Design of a Production Workshop with 24,000 Tons Magnesia Bricks per Year
Abstract
At present, the steel making is developing rapidly. The refractory material plays an important role in the development of the steel making as a supplementary material. With the gradual development of the metallurgical trade, the refractory material craft has got constant improvement, especially the magnesia basic refractory. Magnesia based refractories consist of MgO as the primary chemical constituent with the primary phases of periclase. At present, the main products of magnesia based refractories include normal magnesia brick, direct-bonding magnesia brick, magnesia-calcia brick, magnesia-silica brick, magnesia-alumina brick, magnesia-chrome brick and magnesia-carbon brick. In addition, there are other type of magnesia based refractories which are free of firing and various unshaped products. Normal magnesia brick is made from sintered magnesia and then fired at high temperatures, which contains about 91% MgO with the silicate as the bonding phases. Direct bonding magnesia brick contains more than 95% MgO, in which the grains is bonded together with each other by high temperature sintering. This work designs a plant for producing MZ-91 normal magnesia brick of 14000 tons per year and MZ-95 normal magnesia brick of 10000 tons per year. The application conditions and processing fundamentals for magnesia brick are reviewed. Requirements for raw materials, processing technique, process flow, balance calculation of raw-materials supply, selection of firing equipments and related calculation and the processing inspection system in the production sequence are clarified. Characteristic of this workshop design is elucidated.
Keywords: Refractory, Magnesia brick, Productive technological process,Workshop design