附錄A 譯文
制造業(yè)是現(xiàn)代國民經(jīng)濟(jì)和綜合國力的重要支柱,其生產(chǎn)總值一般占一個(gè)國家國內(nèi)生產(chǎn)總值的20%~55%。在一個(gè)國家的企業(yè)生產(chǎn)力構(gòu)成中,制造技術(shù)的作用一般占60%左右。專家認(rèn)為,世界上各個(gè)國家經(jīng)濟(jì)的競爭,主要是制造技術(shù)的競爭。其競爭能力最終體現(xiàn)在所生產(chǎn)的產(chǎn)品的市場占有率上。隨著經(jīng)濟(jì)技術(shù)的高速發(fā)展以及顧客需求和市場環(huán)境的不斷變化,這種競爭日趨激烈,因而各國政府都非常重視對先進(jìn)制造技術(shù)的研究。
1?當(dāng)前制造科學(xué)要解決的問題
當(dāng)前制造科學(xué)要解決的問題主要集中在以下幾方面:
(1)制造系統(tǒng)是一個(gè)復(fù)雜的大系統(tǒng),為滿足制造系統(tǒng)敏捷性、快速響應(yīng)和快速重組的能力,必須借鑒信息科學(xué)、生命科學(xué)和社會(huì)科學(xué)等多學(xué)科的研究成果,探索制造系統(tǒng)新的體系結(jié)構(gòu)、制造模式和制造系統(tǒng)有效的運(yùn)行機(jī)制。制造系統(tǒng)優(yōu)化的組織結(jié)構(gòu)和良好的運(yùn)行狀況是制造系統(tǒng)建模、仿真和優(yōu)化的主要目標(biāo)。制造系統(tǒng)新的體系結(jié)構(gòu)不僅對制造企業(yè)的敏捷性和對需求的響應(yīng)能力及可重組能力有重要意義,而且對制造企業(yè)底層生產(chǎn)設(shè)備的柔性和可動(dòng)態(tài)重組能力提出了更高的要求。生物制造觀越來越多地被引入制造系統(tǒng),以滿足制造系統(tǒng)新的要求。?
(2)為支持快速敏捷制造,幾何知識(shí)的共享已成為制約現(xiàn)代制造技術(shù)中產(chǎn)品開發(fā)和制造的關(guān)鍵問題。例如在計(jì)算機(jī)輔助設(shè)計(jì)與制造(CAD/CAM)集成、坐標(biāo)測量(CMM)和機(jī)器人學(xué)等方面,在三維現(xiàn)實(shí)空間(3-Real?Space)中,都存在大量的幾何算法設(shè)計(jì)和分析等問題,特別是其中的幾何表示、幾何計(jì)算和幾何推理問題;在測量和機(jī)器人路徑規(guī)劃及零件的尋位(如Localization)等方面,存在C-空間
(配置空間Configuration?Space)的幾何計(jì)算和幾何推理問題;在物體操作(夾持、抓取和裝配等)描述和機(jī)器人多指抓取規(guī)劃、裝配運(yùn)動(dòng)規(guī)劃和操作規(guī)劃方面則需要在旋量空間(Screw?Space)進(jìn)行幾何推理。制造過程中物理和力學(xué)現(xiàn)象的幾何化研究形成了制造科學(xué)中幾何計(jì)算和幾何推理等多方面的研究課題,其理論有待進(jìn)一步突破,當(dāng)前一門新學(xué)科--計(jì)算機(jī)幾何正在受到日益廣泛和深入的研究。
(3)在現(xiàn)代制造過程中,信息不僅已成為主宰制造產(chǎn)業(yè)的決定性因素,而且還是最活躍的驅(qū)動(dòng)因素。提高制造系統(tǒng)的信息處理能力已成為現(xiàn)代制造科學(xué)發(fā)展的一個(gè)重點(diǎn)。由于制造系統(tǒng)信息組織和結(jié)構(gòu)的多層次性,制造信息的獲取、集成與融合呈現(xiàn)出立體性、信息度量的多維性、以及信息組織的多層次性。在制造信息的結(jié)構(gòu)模型、制造信息的一致性約束、傳播處理和海量數(shù)據(jù)的制造知識(shí)庫管理等方面,都還有待進(jìn)一步突破。
(4)各種人工智能工具和計(jì)算智能方法在制造中的廣泛應(yīng)用促進(jìn)了制造智能的發(fā)展。一類基于生物進(jìn)化算法的計(jì)算智能工具,在包括調(diào)度問題在內(nèi)的組合優(yōu)化求解技術(shù)領(lǐng)域中,受到越來越普遍的關(guān)注,有望在制造中完成組合優(yōu)化問題時(shí)的求解速度和求解精度方面雙雙突破問題規(guī)模的制約。制造智能還表現(xiàn)在:智能調(diào)度、智能設(shè)計(jì)、智能加工、機(jī)器人學(xué)、智能控制、智能工藝規(guī)劃、智能診斷等多方面。
這些問題是當(dāng)前產(chǎn)品創(chuàng)新的關(guān)鍵理論問題,也是制造由一門技藝上升為一門科學(xué)的重要基礎(chǔ)性問題。這些問題的重點(diǎn)突破,可以形成產(chǎn)品創(chuàng)新的基礎(chǔ)研究體系。
2?現(xiàn)代機(jī)械工程的前沿科學(xué)
不同科學(xué)之間的交叉融合將產(chǎn)生新的科學(xué)聚集,經(jīng)濟(jì)的發(fā)展和社會(huì)的進(jìn)步對科學(xué)技術(shù)產(chǎn)生了新的要求和期望,從而形成前沿科學(xué)。前沿科學(xué)也就是已解決的和未解決的科學(xué)問題之間的界域。前沿科學(xué)具有明顯的時(shí)域、領(lǐng)域和動(dòng)態(tài)特性。工程前沿科學(xué)區(qū)別于一般基礎(chǔ)科學(xué)的重要特征是它涵蓋了工程實(shí)際中出現(xiàn)的關(guān)鍵科學(xué)技術(shù)問題。
超聲電機(jī)、超高速切削、綠色設(shè)計(jì)與制造等領(lǐng)域,國內(nèi)外已經(jīng)做了大量的研究工作,但創(chuàng)新的關(guān)鍵是機(jī)械科學(xué)問題還不明朗。大型復(fù)雜機(jī)械系統(tǒng)的性能優(yōu)化設(shè)計(jì)和產(chǎn)品創(chuàng)新設(shè)計(jì)、智能結(jié)構(gòu)和系統(tǒng)、智能機(jī)器人及其動(dòng)力學(xué)、納米摩擦學(xué)、制造過程的三維數(shù)值模擬和物理模擬、超精度和微細(xì)加工關(guān)鍵工藝基礎(chǔ)、大型和超大型精密儀器裝備的設(shè)計(jì)和制造基礎(chǔ)、虛擬制造和虛擬儀器、納米測量及儀器、并聯(lián)軸機(jī)床、微型機(jī)電系統(tǒng)等領(lǐng)域國內(nèi)外雖然已做了不少研究,但仍有許多關(guān)鍵科學(xué)技術(shù)問題有待解決。
信息科學(xué)、納米科學(xué)、材料科學(xué)、生命科學(xué)、管理科學(xué)和制造科學(xué)將是改變21世紀(jì)的主流科學(xué),由此產(chǎn)生的高新技術(shù)及其產(chǎn)業(yè)將改變世界的面貌。因此,與以上領(lǐng)域相交叉發(fā)展的制造系統(tǒng)和制造信息學(xué)、納米機(jī)械和納米制造科學(xué)、仿生機(jī)械和仿生制造學(xué)、制造管理科學(xué)和可重構(gòu)制造系統(tǒng)等會(huì)是21世紀(jì)機(jī)械工程科學(xué)的重要前沿科學(xué)。
2.1?制造科學(xué)與信息科學(xué)的交叉--制造信息科學(xué)
機(jī)電產(chǎn)品是信息在原材料上的物化。許多現(xiàn)代產(chǎn)品的價(jià)值增值主要體現(xiàn)在信息上。因此制造過程中信息的獲取和應(yīng)用十分重要。信息化是制造科學(xué)技術(shù)走向全球化和現(xiàn)代化的重要標(biāo)志。人們一方面對制造技術(shù)開始探索產(chǎn)品設(shè)計(jì)和制造過程中的信息本質(zhì),另一方面對制造技術(shù)本身加以改造,以使得其適應(yīng)新的信息化制造環(huán)境。隨著對制造過程和制造系統(tǒng)認(rèn)識(shí)的加深,研究者們正試圖以全新的概念和方式對其加以描述和表達(dá),以進(jìn)一步達(dá)到實(shí)現(xiàn)控制和優(yōu)化的目的。?
與制造有關(guān)的信息主要有產(chǎn)品信息、工藝信息和管理信息,這一領(lǐng)域有如下主要研究方向和內(nèi)容:
(1)?制造信息的獲取、處理、存儲(chǔ)、傳遞和應(yīng)用,大量制造信息向知識(shí)和決策轉(zhuǎn)化。
(2)?非符號信息的表達(dá)、制造信息的保真?zhèn)鬟f、制造信息的管理、非完整制造信息狀態(tài)下的生產(chǎn)決策、虛擬管理制造、基于網(wǎng)絡(luò)環(huán)境下的設(shè)計(jì)和制造、制造過程和制造系統(tǒng)中的控制科學(xué)問題。
這些內(nèi)容是制造科學(xué)和信息科學(xué)基礎(chǔ)融合的產(chǎn)物,構(gòu)成了制造科學(xué)中的新分支--制造信息學(xué)。
2.2?微機(jī)械及其制造技術(shù)研究
微型電子機(jī)械系統(tǒng)(MEMS),是指集微型傳感器、微型執(zhí)行器以及信號處理和控制電路、接口電路、通信和電源于一體的完整微型機(jī)電系統(tǒng)。MEMS技術(shù)的目標(biāo)是通過系統(tǒng)的微型化、集成化來探索具有新原理、新功能的元件和系統(tǒng)。MEMS的發(fā)展將極大地促進(jìn)各類產(chǎn)品的袖珍化、微型化,成數(shù)量級的提高器件與系統(tǒng)的功能密度、信息密度與互聯(lián)密度,大幅度地節(jié)能、節(jié)材。它不僅可以降低機(jī)電系統(tǒng)的成本,而且還可以完成許多大尺寸機(jī)電系統(tǒng)無法完成的任務(wù)。例如用尖端直徑為5μm的微型鑷子可以夾起一個(gè)紅細(xì)胞;制造出3mm大小能夠開動(dòng)的小汽車;可以在磁場中飛行的像蝴蝶大小的飛機(jī)等。MEMS技術(shù)的發(fā)展開辟了技術(shù)全新的領(lǐng)域和產(chǎn)業(yè),具有許多傳統(tǒng)傳感器無法比擬的優(yōu)點(diǎn),因此在制造業(yè)、航空、航天、交通、通信、農(nóng)業(yè)、生物醫(yī)學(xué)、環(huán)境監(jiān)控、軍事、家庭以及幾乎人們接觸到的所有領(lǐng)域中都有著十分廣闊的應(yīng)用前景。
微機(jī)械是機(jī)械技術(shù)與電子技術(shù)在納米尺度上相融合的產(chǎn)物。早在1959年就有科學(xué)家提出微型機(jī)械的設(shè)想,1962年第一個(gè)硅微型壓力傳感器問世。1987年美國加州大學(xué)伯克利分校研制出轉(zhuǎn)子直徑為60~120μm的
硅微型靜電電動(dòng)機(jī),顯示出利用硅微加工工藝制作微小可動(dòng)結(jié)構(gòu)并與集成電路兼容制造微小系統(tǒng)的潛力。微機(jī)械技術(shù)有可能像20世紀(jì)的微電子技術(shù)那樣,在21世紀(jì)對世界科技、經(jīng)濟(jì)發(fā)展和國防建設(shè)產(chǎn)生巨大的影響。近10年來,微機(jī)械的發(fā)展令人矚目。其特點(diǎn)如下:相當(dāng)數(shù)量的微型元器件(微型結(jié)構(gòu)、微型傳感器和微型執(zhí)行器等)和微系統(tǒng)研究成功,體現(xiàn)了其現(xiàn)實(shí)的和潛在的應(yīng)用價(jià)值;多種微型制造技術(shù)的發(fā)展,特別是半導(dǎo)體微細(xì)加工等技術(shù)已成為微系統(tǒng)的支撐技術(shù);微型機(jī)電系統(tǒng)的研究需要多學(xué)科交叉的研究隊(duì)伍,微型機(jī)電系統(tǒng)技術(shù)是在微電子工藝的基礎(chǔ)上發(fā)展的多學(xué)科交叉的前沿研究領(lǐng)域,涉及電子工程、機(jī)械工程、材料工程、物理學(xué)、化學(xué)以及生物醫(yī)學(xué)等多種工程技術(shù)和科學(xué)。
目前對微觀條件下的機(jī)械系統(tǒng)的運(yùn)動(dòng)規(guī)律,微小構(gòu)件的物理特性和載荷作用下的力學(xué)行為等尚缺乏充分的認(rèn)識(shí),還沒有形成基于一定理論基礎(chǔ)之上的微系統(tǒng)設(shè)計(jì)理論與方法,因此只能憑經(jīng)驗(yàn)和試探的方法進(jìn)行研究。微型機(jī)械系統(tǒng)研究中存在的關(guān)鍵科學(xué)問題有微系統(tǒng)的尺度效應(yīng)、物理特性和生化特性等。微系統(tǒng)的研究正處于突破的前夜,是亟待深入研究的領(lǐng)域。
2.3?材料制備/零件制造一體化和加工新技術(shù)基礎(chǔ)
材料是人類進(jìn)步的里程碑,是制造業(yè)和高技術(shù)發(fā)展的基礎(chǔ)。每一種重要新材料的成功制備和應(yīng)用,都會(huì)推進(jìn)物質(zhì)文明,促進(jìn)國家經(jīng)濟(jì)實(shí)力和軍事實(shí)力的增強(qiáng)。21世紀(jì)中,世界將由資源消耗型的工業(yè)經(jīng)濟(jì)向知識(shí)經(jīng)濟(jì)轉(zhuǎn)變,要求材料和零件具有高的性能以及功能化、智能化的特性;要求材料和零件的設(shè)計(jì)實(shí)現(xiàn)定量化、數(shù)字化;要求材料和零件的制備快速、高效并實(shí)現(xiàn)二者一體化、集成化。材料和零件的數(shù)字化設(shè)計(jì)與擬實(shí)仿真優(yōu)化是實(shí)現(xiàn)材料與零件的高效優(yōu)質(zhì)制備/制造及二者一體化、集成化制造的關(guān)鍵。一方面,通過計(jì)算機(jī)完成擬實(shí)仿真優(yōu)化后可以減少材料制備與零件制造過程中的實(shí)驗(yàn)性環(huán)節(jié),獲得最佳的工藝方案,實(shí)現(xiàn)材料與零件的高效優(yōu)質(zhì)制備/制造;另一方面,根據(jù)不同材料性能的要求,如彈性模量、熱膨脹系數(shù)、電磁性能等,研究材料和零件的設(shè)計(jì)形式。進(jìn)而結(jié)合傳統(tǒng)的去除材料式制造技術(shù)、增加材料式覆層技術(shù)等,研究多種材料組分的復(fù)合成形工藝技術(shù)。形成材料與零件的數(shù)字化制造理論、技術(shù)和方法,如快速成形技術(shù)采用材料逐漸增長的原理,突破了傳統(tǒng)的去材法和變形法機(jī)械加工的許多限制,加工過程不需要工具或模具,能迅速制造出任意復(fù)雜形狀又具有一定功能的三維實(shí)體模型或零件。?
2.4?機(jī)械仿生制造
21世紀(jì)將是生命科學(xué)的世紀(jì),機(jī)械科學(xué)和生命科學(xué)的深度融合將產(chǎn)生全新概念的產(chǎn)品(如智能仿生結(jié)構(gòu)),開發(fā)出新工藝(如生長成形工藝)和開辟一系列的新產(chǎn)業(yè),并為解決產(chǎn)品設(shè)計(jì)、制造過程和系統(tǒng)中一系列難題提供新的解決方法。這是一個(gè)極富創(chuàng)新和挑戰(zhàn)的前沿領(lǐng)域。
地球上的生物在漫長的進(jìn)化中所積累的優(yōu)良品性為解決人類制造活動(dòng)中的各種難題提供了范例和指南。從生命現(xiàn)象中學(xué)習(xí)組織與運(yùn)行復(fù)雜系統(tǒng)的方法和技巧,是今后解決目前制造業(yè)所面臨許多難題的一條有效出路。仿生制造指的是模仿生物器官的自組織、自愈合、自增長與自進(jìn)化等功能結(jié)構(gòu)和運(yùn)行模式的一種制造系統(tǒng)與制造過程。如果說制造過程的機(jī)械化、自動(dòng)化延伸了人類的體力,智能化延伸了人類的智力,那么,"仿生制造"則可以說延伸了人類自身的組織結(jié)構(gòu)和進(jìn)化過程。
仿生制造所涉及的科學(xué)問題是生物的"自組織"機(jī)制及其在制造系統(tǒng)中的應(yīng)用問題。所謂"自組織"是指一個(gè)系統(tǒng)在其內(nèi)在機(jī)制的驅(qū)動(dòng)下,在組織結(jié)構(gòu)和運(yùn)行模式上不斷自我完善、從而提高對于環(huán)境適應(yīng)能力的過程。仿生制造的"自組織"機(jī)制為自下而上的產(chǎn)品并行設(shè)計(jì)、制造工藝規(guī)程的自動(dòng)生成、生產(chǎn)系統(tǒng)的動(dòng)態(tài)重組以及產(chǎn)品和制造系統(tǒng)的自動(dòng)趨優(yōu)提供了理論基礎(chǔ)和實(shí)現(xiàn)條件。
仿生制造屬于制造科學(xué)和生命科學(xué)的"遠(yuǎn)緣雜交",它將對21世紀(jì)的制造業(yè)產(chǎn)生巨大的影響。
仿生制造的研究內(nèi)容目前有兩個(gè)方面:
2.4.1?面向生命的仿生制造?
研究生命現(xiàn)象的一般規(guī)律和模型,例如人工生命、細(xì)胞自動(dòng)機(jī)、生物的信息處理技巧、生物智能、生物型的組織結(jié)構(gòu)和運(yùn)行模式以及生物的進(jìn)化和趨優(yōu)機(jī)制等;
2.4.2?面向制造的仿生制造?
研究仿生制造系統(tǒng)的自組織機(jī)制與方法,例如:基于充分信息共享的仿生設(shè)計(jì)原理,基于多自律單元協(xié)同的分布式控制和基于進(jìn)化機(jī)制的尋優(yōu)策略;研究仿生制造的概念體系及其基礎(chǔ),例如:仿生空間的形式化描述及其信息映射關(guān)系,仿生系統(tǒng)及其演化過程的復(fù)雜度計(jì)量方法。
機(jī)械仿生與仿生制造是機(jī)械科學(xué)與生命科學(xué)、信息科學(xué)、材料科學(xué)等學(xué)科的高度融合,其研究內(nèi)容包括生長成形工藝、仿生設(shè)計(jì)和制造系統(tǒng)、智能仿生機(jī)械和生物成形制造等。目前所做的研究工作大多屬前沿探索性的工作,具有鮮明的基礎(chǔ)研究的特點(diǎn),如果抓住機(jī)遇研究下去,將可能產(chǎn)生革命性的突破。今后應(yīng)關(guān)注的研究領(lǐng)域有生物加工技術(shù)、仿生制造系統(tǒng)、基于快速原型制造技術(shù)的組織工程學(xué),以及與生物工程相關(guān)的關(guān)鍵技術(shù)基礎(chǔ)等。?
3?現(xiàn)代制造技術(shù)的發(fā)展趨勢
20世紀(jì)90年代以來,世界各國都把制造技術(shù)的研究和開發(fā)作為國家的關(guān)鍵技術(shù)進(jìn)行優(yōu)先發(fā)展,如美國的先進(jìn)制造技術(shù)計(jì)劃AMTP、日本的智能制造技術(shù)(IMS)國際合作計(jì)劃、韓國的高級現(xiàn)代技術(shù)國家計(jì)劃(G--7)、德國的制造2000計(jì)劃和歐共體的ESPRIT和BRITE-EURAM計(jì)劃。隨著電子、信息等高新技術(shù)的不斷發(fā)展,市場需求個(gè)性化與多樣化,未來現(xiàn)代制造技術(shù)發(fā)展的總趨勢是向精密化、柔性化、網(wǎng)絡(luò)化、虛擬化、智能化、綠色集成化、全球化的方向發(fā)展。
附錄B 外文文獻(xiàn)
Modern manufacturing industry is the national economy and overall national strength of the pillars of its GDP accounted for a general national gross domestic product of 20% to 55%. In a country in a business productivity, the role of manufacturing technology in general accounted for about 60 percent. Experts believe that the world's economic competitiveness in various countries, mainly manufacturing technology competition. Their competitiveness in the production of final products on the market share. With the rapid economic and technological development and customer demand and changing market environment, this competition is increasingly fierce, so governments have attached great importance to the study of advanced manufacturing technology.
1 Current manufacturing science to solve the problem
The current manufacturing science to solve the problem mainly concentrated in the following areas:
??? (1) Manufacturing system is a complex large-scale systems, in order to meet manufacturing system agility, rapid response and rapid reorganization of the ability to draw on information science, life sciences and social sciences, and other multi-disciplinary research and explore new manufacturing system system Structure, creating patterns and manufacturing systems and effective operational mechanism. Manufacturing System optimized organizational structure and operation of a good manufacturing system modeling, simulation and optimization of the main objectives. Create a new system architecture not only for the manufacturing enterprise agility and the ability to respond to the needs of restructuring and capacity can be significant, but the bottom of production equipment manufacturers of flexible and dynamic capacity of the reorganization a higher demand. Biological manufacturing of more and more manufacturing system was introduced to meet the requirements of the new manufacturing system.
??? (2) To support the rapid agile manufacturing, geometric knowledge sharing has become constraints of modern manufacturing technology in product development and manufacturing of key issues. For example, in computer-aided design and manufacturing (CAD / CAM) integration, coordinate measuring (CMM) and robotics, and so on, the reality of space in three-dimensional (3 - Real Space), there are a lot of algorithm design and analysis and other issues, In particular the geometry, geometric computing and geometric reasoning problems in measurement and robot path planning and parts of searching (for example, Localization), and so on, the existence of C-space (Allocation of space Configuration Space) the geometric computing and geometric reasoning problems in the operation of objects (gripping, crawl and assembly, etc.) and describes more than robots that crawl planning, the assembly of campaign planning and operations planning is required in the rotation of space (Screw Space) to geometric reasoning. The manufacturing process in the physical and mechanical phenomenon of the geometric study of the formation of manufacturing science and geometry in the calculation of geometric reasoning, and many other studies, pending further breakthroughs in theory, at present a new subject - computer geometry is being increasingly widespread and in-depth research.
??? (3) In the modern manufacturing process, information not only dominate the manufacturing industry has become the decisive factor, but also the most active drivers. Improve the manufacturing system of information processing capability has become a modern manufacturing scientific development a priority. As manufacturing system of information organization and structure of the multilevel nature, creating access to information, integration and integration of showing a three-dimensional, multi-dimensional measure of information, organization and the multilevel nature of the information. In the manufacturing information model and create the consistency of information bound by the massive data processing and dissemination of the knowledge base management, manufacturing, needs to be further breakthroughs.
??? (4) All kinds of artificial intelligence tools and computational intelligence methods in the manufacture of a wide range of applications for manufacturing smart development. Based on a calculation of the evolutionary algorithm intelligence tools, including the scheduling problem, combinatorial optimization solution in the field of technology, are increasingly common concern, is expected to complete the manufacture of combinatorial optimization problem for the speed and precision for both breakthrough The scale of the problem constraints. Smart also in manufacturing: intelligent scheduling, intelligent design, intelligent processing, robotics, intelligent control and intelligent process planning, diagnosis, and so smart.
???These issues are the key to the current product innovation theory, but also from a manufacturing skills will rise to a scientific basis for important issues. These problems of the key breakthroughs, could form the basis of product innovation research system.
2 The forefront of modern science and mechanical engineering
???Between the different scientific cross-integration will produce new scientific gathering, economic development and social progress of science and technology produced new demands and expectations, thus forming the forefront of science. Cutting-edge science that is resolved and unresolved issues between the scientific community domain. Cutting-edge science has obvious time-domain, and the dynamic characteristics of the area. Forefront of science and engineering is different from the basic sciences in general an important feature is that it covers the practical engineering of the key scientific and technical issues.
Ultrasonic Motor, ultra-high-speed cutting, green design and manufacturing and other fields, at home and abroad have done a lot of research work, but innovation is the key issue is not mechanical scientific uncertainty. Large complex mechanical system performance optimization of product design and innovative design, smart structures and systems, intelligent robot and its dynamics, nanotribology, the manufacturing process of three-dimensional numerical simulation and physical modeling, ultra-precision machining and micro-key technology based, large and Super precision instruments and equipment design and manufacturing base, virtual manufacturing and virtual instruments, measurement and nanotechnology devices, parallel axis machine tools, micro-electromechanical systems, and other fields at home and abroad despite a lot of research has been done, but there are still many key scientific and technical issues to be Solution.
???Information science, nano-science, material science, life science, management science and manufacturing science will be a change in the mainstream of 21st century science, and the resulting high-tech industries will change the face of the world. Therefore, with the development of cross-over areas of the manufacturing system and manufacturing information science, nano-mechanical and nano-science and manufacturing, machinery and biomimetic bionic manufacturing science, management science and manufacturing reconfigurable manufacturing systems will be the 21st century science and mechanical engineering major frontier Science.
2.1 Manufacturing science and information science of cross - Manufacturing Information Science
???In the mechanical and electrical products, information on the physical and chemical raw materials. The value of many modern products are mainly embodied in the value-added information. Therefore the manufacturing process access to information and applications is very important. Information is to create science and technology globalization and an important symbol of modernization. On the one hand, people began to explore the manufacturing technology product design and manufacturing process information in essence, on the other hand the manufacturing technology to transform itself in order to make it adapt to the new information-based manufacturing environment. As the manufacturing process and deepen understanding of the manufacturing system, the researchers are trying to brand new concept and the way it should be described and expression, to achieve further control and optimize the realization of the objective.
???And manufacturing-related information are the main product information, process information and management information, this area has the following main research directions and content:
(1) Manufacturing of information acquisition, processing, storage, transfer and application of information to create a lot of knowledge and decision-making transformation.
(2) The symbol of information, create accurate transmission of information, manufacturing information management, non-manufacturing integrity of the information under the production decision-making, management of virtual manufacturing, network-based environment in the design and manufacturing, the manufacturing process and manufacturing system The control of scientific problems.
???These elements are creating the basis of science and information science a product of integration, manufacturing constituted a new branch of science - Manufacturing Information Science.
2.2 micro-mechanical and manufacturing technology research
???Micro-electronic mechanical systems (MEMS), is set tiny sensors, micro-actuators and signal processing and control circuits, interface circuits, communications and power in the integrity of one micro-electromechanical systems. MEMS technology is the objective of the micro-through system, integrated to exploring a new theory, the new functional components and systems. MEMS development would greatly contribute to the various products of the pocket, miniaturization, the level of increase as the number of devices and systems functional density, density of information density and the Internet, significantly saving energy, materials. It not only can reduce the cost of mechanical and electrical systems, but also completed many large-size mechanical and electrical system could not complete the task. For example, sophisticated diameter of 5 μ m of micro tweezers can Jiaqi a red blood cell manufacturing to 3 mm size can be switched on the car; in the magnetic field like the flight of butterflies the size of aircraft. MEMS technology development opened up new areas of technology and industry, with many of the traditional sensors can not compare the merits, so in the manufacturing, aviation, aerospace, transportation, telecommunications, agriculture, biological medicine, environmental monitoring, military, families, and people almost Access to all areas of both has a very broad prospects.
??? MEMS are mechanical technology and electronic technology in the nano-scale integration of compatible products. As early as 1959 scientists have proposed the idea of micro-machinery, in 1962 the first silicon micro-pressure sensors available. 1987 University of California at Berkeley developed a rotor diameter of 60 ~ 120 μ m of
????Electrostatic silicon micro-motor, showing that the use of silicon micro-processing technology produced tiny movable structures and compatible with IC manufacturing micro system's potential. MEMS technology may like the 20th century in the microelectronics technology, in the 21st century, the world's science and technology, national defense building and economic development have an enormous impact. Over the past 10 years, the development of micro-mechanical eye-catching. Its characteristics are as follows: a considerable number of micro-components (micro-structure of tiny sensors and micro-actuator, etc.) and Micro-System success reflects the reality and potential value; variety of micro-manufacturing technology development, especially in the semiconductor Micro-processing technology has become the support of micro-system technology; MEMS research needs more interdisciplinary research team, micro-electromechanical systems technology in the microelectronics technology is developed on the basis of the multidisciplinary cross the frontier areas of research, involving electronic engineering , Mechanical engineering, materials engineering, physics, chemistry and biomedical engineering and other technical and scientific.
Currently the micro-mechanical systems under the conditions of the movement of tiny components of the physical features and loads of mechanical behavior, such as the lack of full understanding, not necessarily based on a theory based on the micro-system design theory and methods, so only Can use their experience and testing methods for research. Micro-mechanical systems research in key scientific problems with the system of micro-scale effect, physical and biochemical characteristics, and other characteristics. Micro-systems research is in a breakthrough on the eve of, is to be in-depth study of the area.
2.3 Preparation of materials / parts manufacturing and processing integration of new technology based
?? Material is a milestone in human progress, is the manufacturing and high-tech development. Each of the major success of new materials and applications, will promote the material and promote the country's economic strength and military strength of the increase. In the 21st century, the world will be the resource consumption of the industrial economy to a knowledge-based economy changes, requested materials and components with high performance and functionality, intelligent character; requested materials and components designed to achieve the quantitative, digital; requested materials and spare parts Preparation of fast, efficient and to achieve both integration and integrated. Materials and spare parts of the digital design and simulation to optimize it is to achieve efficient materials and components of quality / manufacturing and integration of the two, the integration of manufacturing the key. On the one hand, it is to be completed by computer simulation and optimization can be reduced after the preparation of materials and spare parts manufacturing process in the experimental areas, access to the best of programmes, materials and spare parts to achieve the efficient preparation of quality / manufacturing; On the other hand, based on different materials Performance requirements, such as modulus of elasticity, coefficient of thermal expansion, electromagnetic properties, research materials and spare parts of the design form. Then the removal of traditional materials-manufacturing technology, increased material-coating technology, research various components of the composite material forming technology. Materials and parts of a digital manufacturing theories, techniques and methods, such as rapid prototyping technology uses the principle of gra