JCS-018A 立式加工中心盤式刀庫的結(jié)構(gòu)設(shè)計目的和要求1、通過在網(wǎng)上查找資料,理解其結(jié)構(gòu)和工作原理,并以此為模板運用 UG設(shè)計出加工中心及刀庫的機械結(jié)構(gòu),并且進行運動仿真2、掌握加工中心刀庫及其換刀系統(tǒng)的工作原理和設(shè)計思路3、通過畢業(yè)設(shè)計培養(yǎng)綜合運用所學的基礎(chǔ)理論、基礎(chǔ)知識、基本技能和實習內(nèi)容進行分析和解決問題的能力;使理論與實踐緊密的結(jié)合主要內(nèi)容及應(yīng)完成的工作主要內(nèi)容: 1 了解加工中心刀庫及其換刀裝置的結(jié)構(gòu),工作原理2 用 UG 畫出各個零件的三維圖形3 在 UG 中裝配各個零件并進行運動仿真4 按要求撰寫畢業(yè)設(shè)計說明書應(yīng)完成的工作:1、畢業(yè)設(shè)計任務(wù)書 2、開題報告 3、文獻綜述 4 外文翻譯5、畢業(yè)設(shè)計正本(包含畢業(yè)設(shè)計說明說文本、機械壽命測試臺的三維模型、設(shè)備動畫演示文件、設(shè)備的部分零件圖紙等) 。進度安排2014 年 1 月 25 日——2014 年 3 月 10 日 完成各種相關(guān)資料的查詢和收集,學習并且熟練使用 UG 三維繪圖軟件。2014 年 3 月 11 日——2014 年 4 月 1 日 完成設(shè)計任務(wù)書、開題報告、文獻綜述、外文翻譯等文本的編寫和加工中心刀庫及其換刀裝置結(jié)構(gòu)的認識及各部分尺寸的測量。2014 年 4 月 2 日——2014 年 5 月 10 日 完成加工中心刀庫及其換刀系統(tǒng)的三維建模、運動仿真,編寫設(shè)計說明書。2014 年 5 月 11 日——2014 年 5 月 20 日 整理資料,準備答辯。應(yīng)收集的資料及主要參考文獻查閱網(wǎng)上、圖書館的期刊及相關(guān)書籍資料共計 20 余篇。備注注:1、學生進行畢業(yè)論文(設(shè)計)前,指導教師應(yīng)填好此任務(wù)書,經(jīng)教研室、部(系)主任簽字后,正式給學生下達任務(wù)。2、若是課題組共同完成一項大任務(wù)應(yīng)在備注欄內(nèi)填寫同組設(shè)計者名單。國家計算機集成制造雜志卷 21,8 號,2008 十二月,885–894一個實時仿真虛擬加工中心自動換刀裝置Y.H. Jeong H. Tae , B.-K. Min and D.-W. Cho *abcdSchool of Mechanical Engineering, Yonsei University, Seoul, 120-749, Korea; Central R School of Mechanical cEngineering, Yonsei University, Seoul, 120-749, Korea; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea(Received 27 June 2007; ?nal version received 13 November 2007)在加工中心的離散系統(tǒng),如自動換刀裝置和托盤自動交換裝置在提高加工自動化生產(chǎn)中扮演著重要的角色。然而,系統(tǒng)配置和時序邏輯編程仍需要相當大的技能和基礎(chǔ)上,根據(jù)實際情況處理?;诜抡娴尿炞C環(huán)境可以改善系統(tǒng)性能,減少過渡時間和成本,避免錯誤的設(shè)置和系統(tǒng)。在這項研究中,我們開發(fā)了一個仿真模型以及盤式自動換工具的可視化與空中交通管制(ATC)協(xié)助機械設(shè)計和 PLC邏輯驗證。我們的仿真模型是基于面向?qū)ο蟮慕7椒?并由模型塊對應(yīng)的基本組件(如電機、齒輪組、等),功能和接近傳感器。我們測試了在實時仿真模型,使用一個實際的機床控制器的軟件組件的仿真循環(huán)評估實時計算性能和可行性在真實的應(yīng)用程序中,如邏輯和配置驗證。相關(guān)結(jié)果提要驅(qū)動運動在 ATC 炮塔操作限制傳感器行動表明,我們的方法是實用和滿足實時要求。關(guān)鍵詞:自動工具改變;面向?qū)ο竽P?邏輯驗證;實時仿真1.介紹計算機數(shù)控(CNC)機床是由各種復(fù)雜的元素,比如提要驅(qū)動主軸,工具自動更換裝置(ATC),自動托盤商(APC),計算機數(shù)字控制器和可編程序邏輯控制器(PLC)。因此,設(shè)計、構(gòu)建和安裝是一個復(fù)雜和耗時的過程。一個典型的加工中心有幾個重要的離散系統(tǒng),如空中交通管制,APC,守衛(wèi)大門。這些子系統(tǒng)扮演了一個重要的角色在機床操作和加工自動化。因此,任何性能改進的離散系統(tǒng)可以大大提高生產(chǎn)率。然而,系統(tǒng)配置、時序邏輯生成和驗證所有仍然需要大量的技巧和治療基礎(chǔ)上,根據(jù)實際情況,因為這個過程沒有有效的驗證方法或環(huán)境。仿真技術(shù)已經(jīng)成功地使用在許多行業(yè)提高產(chǎn)品質(zhì)量和減少開發(fā)周期時間。在機床行業(yè),許多類型的模擬等機床有限元方法(FEM)框架,例如,用于機床的開發(fā)和管理。在這種背景下,基于仿真驗證環(huán)境可以提高系統(tǒng)性能,減少走彎路和成本,避免錯誤的設(shè)置和系統(tǒng)惡化。各種方法用于控制或模擬離散系統(tǒng),如生產(chǎn)線。典型的和最普遍的方法使用佩特里網(wǎng)(大衛(wèi)和真主安拉 1994)。在一個模范的研究中,李和許(2005)提出了一個簡化的佩特里網(wǎng)控制器,其中包括傳感器狀態(tài)信息來簡化控制器設(shè)計層面的過程建模。在 ATC 的設(shè)計機制,研究 Gokler 和 Koc(1997)設(shè)計了一個自動盤式工具改變臥式數(shù)控加工中心,和 Dereli Filiz(2000)提出了一種遺傳算法優(yōu)化方法指數(shù)一個空中交通管制的刀具的位置。此外,Baykasoglu 和 Dereli(2004)提出了一個 meta-heuristic 優(yōu)化系統(tǒng)來確定刀具的最佳索引位置最小化theindexing 時間數(shù)控機床工具的雜志。一個驗證開發(fā)的飼料與摩擦傳動系統(tǒng)的動態(tài)模型表示為 Stribeck 曲線,并確定了系統(tǒng)參數(shù)使用最小二乘法和卡爾曼濾波。書釘 et al。(2003)介紹了一個基于互聯(lián)網(wǎng)的虛擬機工具使用機械部件的運動鏈數(shù)控和計算機輔助設(shè)計和制造(CAD / CAM)用于教育目的。張文雄和傅(2006) 還開發(fā)出一種虛擬機工具培訓以及網(wǎng)絡(luò)制造控制。重要的是,他們的系統(tǒng)包括一個切削力預(yù)測模塊基于人工神經(jīng)網(wǎng)絡(luò)(ANN)。侯賽因(1998)提出了一個統(tǒng)一的方法對機電一體化系統(tǒng)模型使用多維數(shù)組和映射函數(shù)作為造型方案,雖然 Harrison et al.。(2000)介紹了一個集成的機械設(shè)計和控制環(huán)境,可以應(yīng)用于機械設(shè)計,控制和維護。哈里森 et al。(2000)應(yīng)用的邏輯設(shè)計和快速成型部分的環(huán)境他們設(shè)計開發(fā)飲料 can-body制造機器。然而,盡管大量的研究機床的模擬和離散系統(tǒng),很難找到一個 ATC 系統(tǒng)仿真方法,減少機床開發(fā)成本和減輕 PLC 邏輯生成和驗證的難度和復(fù)雜性。此外,現(xiàn)有的離散系統(tǒng)的仿真研究考慮系統(tǒng)作為一個簡單的序列或數(shù)據(jù)流,而忽略機械運動學或動力學等特點。因此,它已經(jīng)很難包含系統(tǒng)的運動學或動力學行為或部分在系統(tǒng)級模擬。本研究的目的是開發(fā)一個仿真模型,可以應(yīng)用到 ATC 的空中交通管制機制設(shè)計和 PLC 邏輯驗證。目標特性的仿真模型,該模型必須是通用的,是可重用的擴展成各種 ATC 類型,并且模型必須準確地描述傳感器信號和部分運動運動,這樣他們就可以被應(yīng)用到各種應(yīng)用程序。在這種背景下,我們開發(fā)了以下模型的策略。我們使用了一個基于組件的方法提高通用性。這意味著組件模型塊被定義為可更換單元所購買機床建設(shè)者。每個模型塊有自己的參數(shù),有關(guān)其運動方程,并定義輸入和輸出信號描述模型之間的連接塊。商業(yè)化或標準化的造型語言和工具被用來確保兼容性等各種機床的開發(fā)流程設(shè)計、優(yōu)化和驗證邏輯,和維護過程。我們描述一個典型的盤式 ATC 機制,在第二節(jié)的基本組件。第三節(jié)討論了ATC 仿真模型的細節(jié)我們發(fā)達的模型塊對應(yīng)的基本部分。第四節(jié)描述了兩個仿真結(jié)果,介紹了實時仿真方法和仿真結(jié)果可視化模塊。第一個模擬與提要驅(qū)動器與極限運動傳感器模擬工具改變位置的方法。第二個是 ATC 炮塔工具變化的模擬操作。我們使用我們的實時仿真方法結(jié)合仿真模型與實際機床控制器的軟件組件在一個模擬循環(huán)使用內(nèi)部數(shù)據(jù)通信表明,我們的模型實時計算性能和 PLC 邏輯驗證是可行的。結(jié)論在第五節(jié)。圖 1 原理圖的一個典型的盤式 ATC 沒有改變圖 2 等效的模型等。圖 3 簡化的快動作開關(guān)用作限制傳感器。圖 4 接近傳感器的等效模型和遙感磁盤和螺栓。2。調(diào)查的 ATC 模型雜志典型的盤式 ATC 裝置包含以下基本組件:一個炮塔磁盤,一組齒輪、回轉(zhuǎn)馬達、等功能,和幾個傳感器?;剞D(zhuǎn)馬達,它提供了驅(qū)動功率的 ATC 炮塔裝置等軸旋轉(zhuǎn),間歇旋轉(zhuǎn)等變化連續(xù)動作,從垂直旋轉(zhuǎn)軸方向橫向。它使用的組合凸輪和磁盤索引,轉(zhuǎn)移其旋轉(zhuǎn)運動通過其軸等功能的裝置。最后,齒輪裝置和磁盤旋轉(zhuǎn)速度剖面,可以簡化低速度值為零的矩形波。注意,本研究中使用的盤式 ATC 裝置有兩個類型的接近傳感器,使用磁盤和螺栓檢測工具改變位置和計算炮塔旋轉(zhuǎn)間隔。圖 1 顯示了一個示意圖的互連基本組件在一個典型的盤式 ATC 裝置。在本研究中,我們模擬限制傳感器模擬自動工具的復(fù)雜連續(xù)的運動變化,包括炮塔裝置的驅(qū)動和運動。圖 5 仿真模型的一個提要積極限制傳感器驅(qū)動系統(tǒng)。圖 6 一個提要驅(qū)動系統(tǒng)的仿真結(jié)果積極限制傳感器。圖 7 ATC 炮塔的仿真模型。4。模擬的自動工具改變本研究構(gòu)建的仿真模型使用基于 Modelica Dymola 語言(勃拉克 et al . 2002 年)。模型的仿真模型由組件(如電機、齒輪的集合(齒輪箱))等對應(yīng)的功能。每個模型塊標準形式,其中包括輸入和輸出信號,模型參數(shù),和自己的方程式。該模型結(jié)構(gòu)容易實現(xiàn) Modelica 語言,因為語言是面向?qū)ο蟮?。模型的每個部分的屬性等參數(shù)和方程可以指定和修改使用圖形框圖界面或在一個文本文件中。模擬的操作限制傳感器在旋轉(zhuǎn)電機驅(qū)動的線性階段,我們聯(lián)合動態(tài)仿真模型的線性階段從先前的工作(Jeong et al . 2006 年)限制傳感器模型,如圖 3 所示。圖 5 顯示了總體仿真模塊,該模塊可用于遙感超程階段歸航,到達的位置工具改變操作。在這項研究中所使用的線性階段模型由模型塊對應(yīng)的速度和轉(zhuǎn)矩控制,一個簡單的直流電機,軸向聯(lián)合、導螺桿和導軌。積極的限制傳感器響應(yīng)瞬時表位置。的圖中顯示積極限制傳感器監(jiān)控表的位置。因此,飼料的表位置獲得或預(yù)測轉(zhuǎn)移到限制傳感器塊驅(qū)動仿真模型,方程(5)所示。限制傳感器模型塊比較轉(zhuǎn)移位置指定的限制傳感器位置。圖 6 顯示了模擬線性階段,傳感器操作控制電機速度時 60 rad / s。圖 6(a)顯示了電機速度和驅(qū)動電流、和圖 6(b)顯示了表和傳感器位置。注意,傳感器輸出從 0 變?yōu)?1 當表到達 0.1 米。傳感器的傳感器位置公差模型中被設(shè)置為 0。圖 8 ATC 炮塔操作的仿真結(jié)果。我們使用我們的 ATC 炮塔模型模擬 ATC 炮塔的性能。圖 7 顯示了 ATC 炮塔的實際仿真模型和恒定的命令。這表明兩個接近傳感器分別檢測螺栓和連接到炮塔磁盤。仿真模型顯示當前工具數(shù)量隨著炮塔角度變化。此外,兩個距離傳感器的輸出信號監(jiān)測的 PLC 內(nèi)核提供 CNC 控制器,控制 ATC 炮塔操作。仿真中使用的模型參數(shù)如表 1 所示,從改造小型加工中心(SPT-V30T,現(xiàn)代汽車(Hyundai Motor Co。)和一個炮塔類型 overhead-disk 雜志和一個基于 PC 的數(shù)控(HX TurboTek)。十四個工具裝置。圖 8(a)、(b)和(c)顯示仿真結(jié)果當工具改變從1 號到 12 號。更具體地說,圖 8(一個)顯示炮塔的旋轉(zhuǎn)角,不斷旋轉(zhuǎn)的動作等功能。圖 8(b)和(c)顯示的邏輯輸出接近傳感器連接到磁盤和等軸炮塔。從這些數(shù)據(jù)中我們可以看到接近傳感器的輸出的炮塔磁盤是相反的,接近傳感器等因為等對應(yīng)的旋轉(zhuǎn)炮塔的旋轉(zhuǎn)磁盤。我們比較仿真結(jié)果與實際行動炮塔運動。圖 9 顯示了這種比較的結(jié)果變化時間從第一個工具(工具 1)到最后一個工具。仿真結(jié)果在 2%的實際時間。我們推斷這個錯誤來自實際電機的速度變化和識別錯誤的仿真模型參數(shù)如電機速度和傳動比。圖 9 模擬和測量之間的比較結(jié)果 tool-to-tool 變更時間從第一個工具(工具 1)。圖 10。原理圖的實時仿真。我們介紹了實時仿真方法是否可以應(yīng)用于 PLC 邏輯驗證。我們設(shè)計了一個模擬循環(huán)在計算機實時內(nèi)核,分離軟件對控制器的仿真模型。圖 10 顯示了這個模擬的結(jié)構(gòu)。仿真回路由一個實際的控制器的軟件部分和一個動態(tài)鏈接庫(DLL)仿真模型的文件;這些相通通過共享內(nèi)存??刂破鲙焓怯蓴?shù)控(NC)內(nèi)核控制驅(qū)動系統(tǒng)和 PLC 的內(nèi)核操作的離散系統(tǒng),如限制傳感器和 ATC 炮塔。仿真模型包括飼料驅(qū)動器和 ATC 炮塔模型在第三節(jié)中描述。我們監(jiān)控使用單獨的計算機仿真結(jié)果,以避免影響計算機運行的實時性能仿真循環(huán)。之間的連接控制器軟件和控制器之間的仿真模型是相同的,和實際的飼料驅(qū)動器的 ATC 炮塔,除了實際的線路被內(nèi)部數(shù)據(jù)通信所取代。提出的模擬進行了工業(yè)個人電腦(pxi - 8186 RT)的實時內(nèi)核,2.2 GHz Pentium 4 CPU 和 512 MB 的隨機存取存儲器。我們使用四階龍格-庫塔算法集成 0.5 毫秒的時間步長仿真??刂破鞲聲r間設(shè)置為 1 ms 提要驅(qū)動器和 4 ms ATC 炮塔。結(jié)論在這項研究中,我們開發(fā)了一個仿真模型的自動工具變換器使用炮塔雜志。W 使用面向?qū)ο蟮姆椒?gòu)建一個概括模型的基本組件的 ATC 炮塔模型作為單獨的塊,和連接在一起他們會在實際的 ATC 每一塊都有自己的參數(shù)和方程描述相應(yīng)的塊的運動。仿真結(jié)果表明,該方法生成的現(xiàn)實操作組件運動和傳感器信號。我們開發(fā)了一個三維可視化演示仿真結(jié)果。集成的仿真模型與實際機床控制器表明,我們的模型可以用于實時邏輯驗證為了減少走彎路和錯誤的設(shè)置問題。的實時仿真PLC 邏輯,模型成功地扮演了真正的 ATC 炮塔和飼料的角色。我們表明,我們的模型可以滿足實時要求,和計算時間的仿真循環(huán)時間不到 30 分之一。確認本研究得到了批準號 krf - 2004 - 202 - d00068 科技部。參考文獻[1].Baykasoglu,a . Dereli,T。,2004 年。啟發(fā)式優(yōu)化系統(tǒng)測定在索引位置數(shù)控雜志考慮刀具重復(fù)。國際期刊的生產(chǎn)研究,42(7),1281 - 1303。[2].勃拉克,D。,et al .,2002。Dymola multi-engineering 建模和仿真。:2號國際 Modelica 會議,55.1 - -55.8。[3].大衛(wèi),r 和真主安拉,H。,1994 年。佩特里網(wǎng)建模的動態(tài)系統(tǒng)調(diào)查。自動化,30(2),175 - 202。[4].Dereli、t 和 Filiz I.H.,2000 年。分配使用遺傳算法優(yōu)化索引位置工具雜志。機器人和自動化系統(tǒng),33 歲,155 - 167。[5].Erkorkmaz,k 和 Altintas,Y。,2001 年。高速數(shù)控系統(tǒng)的設(shè)計。第二部分:建模和識別飼料驅(qū)動器。國際期刊的機床和制造,41 歲,1487 - 1509。[6].Gokler,馬丁和 Koc M.B.,1997 年。設(shè)計一個自動工具變換器與圓盤雜志控臥式加工中心。國際期刊的機床和制造、37(3),277 - 286。哈里森,R。西,賴特,C.D.,2000 年。集機械設(shè)計和控制。國際計算機雜志 Iintegrated 制造、13(6),498 - 516。[7].侯賽因,學士學位,1998 年。一個造型機電一體化系統(tǒng)的系統(tǒng)方法。CIRP 年報,48(1),431 - 436。[8].宋,Y.H.分鐘,B.-K。曹,D.-W。,2006 年。估計機床飼料驅(qū)動傾向從電流測量和數(shù)學模型。國際期刊的機床和制造,46 歲,1343 - 1349。[9].Sheu, J.J. and Fu, T.C.,,2005 年。順序控制器的系統(tǒng)方法設(shè)計制造系統(tǒng)。國際先進制造技術(shù)雜志》上,25 歲,754 - 760。[10].張文雄,J.J.和傅,青木,2006 年。發(fā)展高速加工的智能虛擬現(xiàn)實系統(tǒng)。材料科學論壇,505 - 507,626 - 630。[11].Suh, S.-H., et al.,2003 年。建模和基于互聯(lián)網(wǎng)的虛擬機的實現(xiàn)工具。國際先進制造技術(shù)雜志,21 歲,516 - 522。JCS-018A 立式加工中心盤式刀庫的結(jié)構(gòu)設(shè)計開題報告1.課題名稱加工中心刀庫和換刀裝置機構(gòu)的設(shè)計英文名稱:Machining center knife library and tool change device design2.選題目的和意義目的:隨著科學技術(shù)的不斷發(fā)展和計算機技術(shù)日益普及,數(shù)控機床越來越取代普通的機床,成為市場的主角,但是在科學技術(shù)飛速發(fā)展的今天,市場對于數(shù)控機床的要求也就越來越高?,F(xiàn)在的產(chǎn)品更新的速度越來越快,而且市場上的零件的形狀越來越復(fù)雜,但是對于零件的精度卻越來越高,生產(chǎn)的周期越來越短。加工中心就是這樣應(yīng)運而生,它是將這些加工工序集中在一臺機床上,一次裝夾,按不同的工序選擇和更換刀具,進給速度,進給量和刀具相當于工件的運動軌跡,一次完成多個工序的加工。但是由于歷史的客觀原因,我國的數(shù)控加工技術(shù)相對于國外來說起步晚發(fā)展慢,現(xiàn)在距離西方發(fā)達國家還有 10-15 年的差距,在一些高精尖的技術(shù)上更甚。特別是在產(chǎn)品開發(fā)這一塊,很多東西都是依賴進口而國內(nèi)的市場上技術(shù)還不成熟,還不能夠贏得顧客的青睞。而國內(nèi)的企業(yè)缺乏對于數(shù)控市場領(lǐng)域的研究不足,產(chǎn)品開發(fā)和制造的能力還不夠滿足市場的需求,對產(chǎn)品的規(guī)劃制定不夠。現(xiàn)在而言呢國內(nèi)在加工中心刀庫和換刀系統(tǒng)這一塊還有很大的提升空間,這對于提高產(chǎn)品的精度和生產(chǎn)周期都有很大的作用。而我們機械行業(yè)的大學生是將來機械產(chǎn)品研究制造的主導者,充分的認識數(shù)控加工中心刀庫和換刀裝置的結(jié)構(gòu)有助于我們更好的認識到自己的不足和在將來更好地改進。意義:造業(yè)的最重要的就是時間,節(jié)省了非加工所需的時間都會大幅度的提高工作效率,從而進一步減少成本,提高生產(chǎn)效率。數(shù)控加工中心,特別是帶刀庫的數(shù)控加工中心就可以大幅減少非加工時間。自動換刀裝置的出現(xiàn)解決了工序分散,零件裝夾,更換刀具帶來的非加工時間過長的問題。因此刀庫換刀工序集中的特點將會是數(shù)控機床的重點發(fā)展方向。因此帶刀庫的數(shù)控加工中心將會是未來數(shù)控機床的發(fā)展方向。加工中心刀庫和換刀裝置的設(shè)計涉及到我們大學中學到的很多方面的內(nèi)容,比如對自動換刀裝置就可以利用 PLC 控制,而動力可以選擇液壓元件或是電動機,而其中刀庫和換刀裝置對于機械機構(gòu)的有一定的要求。課題內(nèi)容涉及機械、電氣、控制技術(shù)、數(shù)控技術(shù)等方面,覆蓋了各個方面,綜合性強。并且通過對這個課題的研究可以提高自己的裝也知識,還可以把機械和電氣聯(lián)系起來,真正做到機電一體化。3.國內(nèi)外現(xiàn)狀及發(fā)展趨勢目前國內(nèi)外的數(shù)控加工中心的自動換刀裝置系統(tǒng)當中,刀具和輔具一般都采用錐柄的結(jié)構(gòu)形式,機床主軸的刀具夾緊機構(gòu)以及刀庫的驅(qū)動方式和機械手的驅(qū)動方式差不多都是一樣的模式。對目前提高換刀方式的主要方式就是提高選刀的效率和減少刀具交換的時間,選刀的方式有很多種,但是精確度還可以繼續(xù)提高,選刀的時間將會得到很大程度上的縮短??s短刀具交換的時間就目前的行業(yè)情況來看,提高的幅度不會很大,主要是驅(qū)動方式的改進,目前換刀速度較快的是凸輪裝置換刀方式,最快的刀對刀換刀時間已經(jīng)達到了 1.5S 以內(nèi)。根據(jù)行業(yè)的需求,小容量的刀庫已經(jīng)無法滿足企業(yè)需求,大型刀庫的研制也是關(guān)鍵的發(fā)展方向,刀具曾多,質(zhì)量變大也給自動換刀裝置帶來了難度。以往提高自動換刀工作效率主要在刀具交換的時間上大力研究,但是現(xiàn)在隨著換刀技術(shù)的成熟,驅(qū)動設(shè)備的不斷完善,換刀時間也無法進一步的有所突破。所以以后的發(fā)展方向?qū)堑毒哌x擇方式的改進和精確度的提高。就我國的加工中心的發(fā)展來看,國內(nèi)沒有專門制造生產(chǎn)自動化刀裝置的企業(yè),一些大型的機床廠都是根據(jù)需求,自主研制換刀裝置。目前國內(nèi)的刀庫主要依靠進口,使用臺灣的刀庫較多,也有其他國家知名企業(yè)的產(chǎn)品。自動換刀裝置的發(fā)展左右了數(shù)控加工中心的未來發(fā)展,國內(nèi)企業(yè)要盡快擁有自己獨立的產(chǎn)品脫離進口才是關(guān)鍵,雖然起步較晚,但是我仍然相信未來國內(nèi)的數(shù)控加工中心會得到很大的提高,能夠生產(chǎn)出高端的機床。4、選題研究內(nèi)容和要解決的關(guān)鍵問題設(shè)計刀庫時應(yīng)該注意的問題在設(shè)計時應(yīng)該讓它滿足換刀時間短,刀具重復(fù)定位精度高;刀具存儲量足夠,結(jié)構(gòu)緊湊,便于制造,維修,調(diào)整。布局應(yīng)該合理,使機床總布局美觀大方;應(yīng)該有較好的剛性,避免沖擊振動和噪音,運轉(zhuǎn)安全可靠,應(yīng)有防屑,防塵的裝置要求。1)合理確定刀庫的存儲量,一般刀庫的存儲量以 10-40 把較為合適, 41-60 把刀具基本上滿足絕大多數(shù)零件的要求。2)盡量的縮短選刀時間,將選刀時間與加工時間重疊,根據(jù)所選刀具在刀庫中的位置來決定刀庫正轉(zhuǎn)或反轉(zhuǎn),以縮短選刀時間。3)刀庫的運動速度應(yīng)該適宜,國內(nèi)外鏈式刀庫的線速度可達 100-800mm/s,最大刀具長度為 500mm,最大刀具重量為 100kg.4)要求刀庫運行平穩(wěn),如對鏈式刀庫設(shè)置刀座運動導軌。5)刀座到刀庫中的排列,一般來講刀座間距相等。6)刀庫防塵,防屑及安全防護等問題都必須在設(shè)計刀庫的過程中考慮進去。擬采用 JCS-018A 自動換刀數(shù)控立式鏜銑床,它的自動換刀裝置是由盤式刀庫和刀具交換裝置組成。刀庫安裝在機床左側(cè)的立柱上,刀庫容量為 16 把刀,換刀機械手安裝在刀庫和主軸之間。機械手將刀庫中取出送到機床主軸上,然后將用過的舊刀送回刀庫。在設(shè)計時應(yīng)該考慮的有刀具的選擇方式,刀具的識別裝置,刀具交換裝置等的選擇。關(guān)鍵問題(1)選用的是 JCS-018A 自動換刀數(shù)控立式鏜銑床,采用的是盤刀庫,確定的基本參數(shù)如下:刀庫直徑:400mm刀具數(shù)量:16 把最大刀具直徑:40mm平均刀具重量:8kg刀盤最低轉(zhuǎn)速:60r/min換刀時間:3.2s(刀到刀)刀具形式:BT40(2)在設(shè)計中,需要重點考慮的問題有刀庫的傳動方案的設(shè)計,換刀裝置的設(shè)計,刀庫的設(shè)計,刀庫中主要零件參數(shù)的設(shè)計,刀具換刀裝置的設(shè)計,選刀方式等,最后要用 UG 進行三維建模并編寫設(shè)計說明書。5、研究方法1.文獻資料法:根據(jù)已掌握的文獻,查找相關(guān)數(shù)控機床的書籍,利用校園網(wǎng)查詢各類期刊,學術(shù)報告,學術(shù)會議論文,學位論文,科技檔案等。2.咨詢老師法:在做畢業(yè)設(shè)計的過程中難免有很多問題自己不能解決,這時就有必要向老師詢問解決的辦法或是索要相關(guān)的資料。6.計劃進度2014 年 12 月 25 日——2014 年 3 月 1 日 完成各種相關(guān)資料的查詢和收集,學習并且熟練使用 UG 三維繪圖軟件。2014 年 3 月 2 日——2014 年 3 月 18 日 完成設(shè)計任務(wù)書、開題報告、文獻綜述、外文翻譯等文本的編寫和加工中心刀庫及換刀裝置的結(jié)構(gòu)問題。2010 年 3 月 19 日——2010 年 5 月 19 日 完成加工中心刀庫和換刀裝置的三維建模、運動仿真及控制程序調(diào)試,編寫設(shè)計說明書。2010 年 5 月 20 日——2010 年 6 月 2 日 整理資料,準備答辯。參考文獻1.數(shù)控技術(shù)/廖效果主編.武漢:湖北科學技術(shù)出版社,2000.52.時雨 加工中心換刀系統(tǒng)設(shè)計3.聶小春,韓利紅 ,孫曉輝 ,汪菊英 4 5 # - 1 6 T 型立式加工中心 盤式刀庫的設(shè)計 4.張建玲 F AN U C O i M D 數(shù)控系統(tǒng)斗笠式刀庫實現(xiàn)自動換刀 5.應(yīng)保勝,楊威,邱新橋 高速加工中心自動換刀裝置的研究 6.張字, 夏曉平 加工中心斗笠式刀庫換刀裝置的設(shè)計 7.周建東 加工中心盤式刀庫的設(shè)計 8.汪雪松 加工中心自動換刀裝置 9.李永軍 吳麗 范春宏 王慶利 鏈式刀庫自動換刀裝置及其液壓控系統(tǒng)的設(shè)計與分析 10.張躍明,楊伯金,牟宏明,楊宇 盤式刀庫控制系統(tǒng)設(shè)計與開發(fā)11.王振龍 數(shù)控機床 自動換刀裝置的研究 12.簡志雄 四軸機床盤盤式刀庫 P L C 程序的設(shè)計13.Y.H. Jeonga H. Tae B.-K. Minc and D.-W. Chod*Virtual automatic tool changer of a machining centre with a real-time simulation14.ADIL BAYKASOGLUy* and TURKAY DERELIy Heuristic optimization system for the determination of index positions on CNC magazines with the consideration of cutting tool duplicationsJCS-018A 立式加工中心盤式刀庫的結(jié)構(gòu)設(shè)計目的和要求1、通過在網(wǎng)上查找資料,理解其結(jié)構(gòu)和工作原理,并以此為模板運用 UG設(shè)計出加工中心及刀庫的機械結(jié)構(gòu),并且進行運動仿真2、掌握加工中心刀庫及其換刀系統(tǒng)的工作原理和設(shè)計思路3、通過畢業(yè)設(shè)計培養(yǎng)綜合運用所學的基礎(chǔ)理論、基礎(chǔ)知識、基本技能和實習內(nèi)容進行分析和解決問題的能力;使理論與實踐緊密的結(jié)合主要內(nèi)容及應(yīng)完成的工作主要內(nèi)容: 1 了解加工中心刀庫及其換刀裝置的結(jié)構(gòu),工作原理2 用 UG 畫出各個零件的三維圖形3 在 UG 中裝配各個零件并進行運動仿真4 按要求撰寫畢業(yè)設(shè)計說明書應(yīng)完成的工作:1、畢業(yè)設(shè)計任務(wù)書 2、開題報告 3、文獻綜述 4 外文翻譯5、畢業(yè)設(shè)計正本(包含畢業(yè)設(shè)計說明說文本、機械壽命測試臺的三維模型、設(shè)備動畫演示文件、設(shè)備的部分零件圖紙等) 。進度安排2014 年 1 月 25 日——2014 年 3 月 10 日 完成各種相關(guān)資料的查詢和收集,學習并且熟練使用 UG 三維繪圖軟件。2014 年 3 月 11 日——2014 年 4 月 1 日 完成設(shè)計任務(wù)書、開題報告、文獻綜述、外文翻譯等文本的編寫和加工中心刀庫及其換刀裝置結(jié)構(gòu)的認識及各部分尺寸的測量。2014 年 4 月 2 日——2014 年 5 月 10 日 完成加工中心刀庫及其換刀系統(tǒng)的三維建模、運動仿真,編寫設(shè)計說明書。2014 年 5 月 11 日——2014 年 5 月 20 日 整理資料,準備答辯。應(yīng)收集的資料及主要參考文獻查閱網(wǎng)上、圖書館的期刊及相關(guān)書籍資料共計 20 余篇。備注注:1、學生進行畢業(yè)論文(設(shè)計)前,指導教師應(yīng)填好此任務(wù)書,經(jīng)教研室、部(系)主任簽字后,正式給學生下達任務(wù)。2、若是課題組共同完成一項大任務(wù)應(yīng)在備注欄內(nèi)填寫同組設(shè)計者名單。國家計算機集成制造雜志卷 21,8 號,2008 十二月,885–894一個實時仿真虛擬加工中心自動換刀裝置Y.H. Jeong H. Tae , B.-K. Min and D.-W. Cho *abcdSchool of Mechanical Engineering, Yonsei University, Seoul, 120-749, Korea; Central R School of Mechanical cEngineering, Yonsei University, Seoul, 120-749, Korea; Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Korea(Received 27 June 2007; ?nal version received 13 November 2007)在加工中心的離散系統(tǒng),如自動換刀裝置和托盤自動交換裝置在提高加工自動化生產(chǎn)中扮演著重要的角色。然而,系統(tǒng)配置和時序邏輯編程仍需要相當大的技能和基礎(chǔ)上,根據(jù)實際情況處理?;诜抡娴尿炞C環(huán)境可以改善系統(tǒng)性能,減少過渡時間和成本,避免錯誤的設(shè)置和系統(tǒng)。在這項研究中,我們開發(fā)了一個仿真模型以及盤式自動換工具的可視化與空中交通管制(ATC)協(xié)助機械設(shè)計和 PLC邏輯驗證。我們的仿真模型是基于面向?qū)ο蟮慕7椒?并由模型塊對應(yīng)的基本組件(如電機、齒輪組、等),功能和接近傳感器。我們測試了在實時仿真模型,使用一個實際的機床控制器的軟件組件的仿真循環(huán)評估實時計算性能和可行性在真實的應(yīng)用程序中,如邏輯和配置驗證。相關(guān)結(jié)果提要驅(qū)動運動在 ATC 炮塔操作限制傳感器行動表明,我們的方法是實用和滿足實時要求。關(guān)鍵詞:自動工具改變;面向?qū)ο竽P?邏輯驗證;實時仿真1.介紹計算機數(shù)控(CNC)機床是由各種復(fù)雜的元素,比如提要驅(qū)動主軸,工具自動更換裝置(ATC),自動托盤商(APC),計算機數(shù)字控制器和可編程序邏輯控制器(PLC)。因此,設(shè)計、構(gòu)建和安裝是一個復(fù)雜和耗時的過程。一個典型的加工中心有幾個重要的離散系統(tǒng),如空中交通管制,APC,守衛(wèi)大門。這些子系統(tǒng)扮演了一個重要的角色在機床操作和加工自動化。因此,任何性能改進的離散系統(tǒng)可以大大提高生產(chǎn)率。然而,系統(tǒng)配置、時序邏輯生成和驗證所有仍然需要大量的技巧和治療基礎(chǔ)上,根據(jù)實際情況,因為這個過程沒有有效的驗證方法或環(huán)境。仿真技術(shù)已經(jīng)成功地使用在許多行業(yè)提高產(chǎn)品質(zhì)量和減少開發(fā)周期時間。在機床行業(yè),許多類型的模擬等機床有限元方法(FEM)框架,例如,用于機床的開發(fā)和管理。在這種背景下,基于仿真驗證環(huán)境可以提高系統(tǒng)性能,減少走彎路和成本,避免錯誤的設(shè)置和系統(tǒng)惡化。各種方法用于控制或模擬離散系統(tǒng),如生產(chǎn)線。典型的和最普遍的方法使用佩特里網(wǎng)(大衛(wèi)和真主安拉 1994)。在一個模范的研究中,李和許(2005)提出了一個簡化的佩特里網(wǎng)控制器,其中包括傳感器狀態(tài)信息來簡化控制器設(shè)計層面的過程建模。在 ATC 的設(shè)計機制,研究 Gokler 和 Koc(1997)設(shè)計了一個自動盤式工具改變臥式數(shù)控加工中心,和 Dereli Filiz(2000)提出了一種遺傳算法優(yōu)化方法指數(shù)一個空中交通管制的刀具的位置。此外,Baykasoglu 和 Dereli(2004)提出了一個 meta-heuristic 優(yōu)化系統(tǒng)來確定刀具的最佳索引位置最小化theindexing 時間數(shù)控機床工具的雜志。一個驗證開發(fā)的飼料與摩擦傳動系統(tǒng)的動態(tài)模型表示為 Stribeck 曲線,并確定了系統(tǒng)參數(shù)使用最小二乘法和卡爾曼濾波。書釘 et al。(2003)介紹了一個基于互聯(lián)網(wǎng)的虛擬機工具使用機械部件的運動鏈數(shù)控和計算機輔助設(shè)計和制造(CAD / CAM)用于教育目的。張文雄和傅(2006) 還開發(fā)出一種虛擬機工具培訓以及網(wǎng)絡(luò)制造控制。重要的是,他們的系統(tǒng)包括一個切削力預(yù)測模塊基于人工神經(jīng)網(wǎng)絡(luò)(ANN)。侯賽因(1998)提出了一個統(tǒng)一的方法對機電一體化系統(tǒng)模型使用多維數(shù)組和映射函數(shù)作為造型方案,雖然 Harrison et al.。(2000)介紹了一個集成的機械設(shè)計和控制環(huán)境,可以應(yīng)用于機械設(shè)計,控制和維護。哈里森 et al。(2000)應(yīng)用的邏輯設(shè)計和快速成型部分的環(huán)境他們設(shè)計開發(fā)飲料 can-body制造機器。然而,盡管大量的研究機床的模擬和離散系統(tǒng),很難找到一個 ATC 系統(tǒng)仿真方法,減少機床開發(fā)成本和減輕 PLC 邏輯生成和驗證的難度和復(fù)雜性。此外,現(xiàn)有的離散系統(tǒng)的仿真研究考慮系統(tǒng)作為一個簡單的序列或數(shù)據(jù)流,而忽略機械運動學或動力學等特點。因此,它已經(jīng)很難包含系統(tǒng)的運動學或動力學行為或部分在系統(tǒng)級模擬。本研究的目的是開發(fā)一個仿真模型,可以應(yīng)用到 ATC 的空中交通管制機制設(shè)計和 PLC 邏輯驗證。目標特性的仿真模型,該模型必須是通用的,是可重用的擴展成各種 ATC 類型,并且模型必須準確地描述傳感器信號和部分運動運動,這樣他們就可以被應(yīng)用到各種應(yīng)用程序。在這種背景下,我們開發(fā)了以下模型的策略。我們使用了一個基于組件的方法提高通用性。這意味著組件模型塊被定義為可更換單元所購買機床建設(shè)者。每個模型塊有自己的參數(shù),有關(guān)其運動方程,并定義輸入和輸出信號描述模型之間的連接塊。商業(yè)化或標準化的造型語言和工具被用來確保兼容性等各種機床的開發(fā)流程設(shè)計、優(yōu)化和驗證邏輯,和維護過程。我們描述一個典型的盤式 ATC 機制,在第二節(jié)的基本組件。第三節(jié)討論了ATC 仿真模型的細節(jié)我們發(fā)達的模型塊對應(yīng)的基本部分。第四節(jié)描述了兩個仿真結(jié)果,介紹了實時仿真方法和仿真結(jié)果可視化模塊。第一個模擬與提要驅(qū)動器與極限運動傳感器模擬工具改變位置的方法。第二個是 ATC 炮塔工具變化的模擬操作。我們使用我們的實時仿真方法結(jié)合仿真模型與實際機床控制器的軟件組件在一個模擬循環(huán)使用內(nèi)部數(shù)據(jù)通信表明,我們的模型實時計算性能和 PLC 邏輯驗證是可行的。結(jié)論在第五節(jié)。圖 1 原理圖的一個典型的盤式 ATC 沒有改變圖 2 等效的模型等。圖 3 簡化的快動作開關(guān)用作限制傳感器。圖 4 接近傳感器的等效模型和遙感磁盤和螺栓。2。調(diào)查的 ATC 模型雜志典型的盤式 ATC 裝置包含以下基本組件:一個炮塔磁盤,一組齒輪、回轉(zhuǎn)馬達、等功能,和幾個傳感器。回轉(zhuǎn)馬達,它提供了驅(qū)動功率的 ATC 炮塔裝置等軸旋轉(zhuǎn),間歇旋轉(zhuǎn)等變化連續(xù)動作,從垂直旋轉(zhuǎn)軸方向橫向。它使用的組合凸輪和磁盤索引,轉(zhuǎn)移其旋轉(zhuǎn)運動通過其軸等功能的裝置。最后,齒輪裝置和磁盤旋轉(zhuǎn)速度剖面,可以簡化低速度值為零的矩形波。注意,本研究中使用的盤式 ATC 裝置有兩個類型的接近傳感器,使用磁盤和螺栓檢測工具改變位置和計算炮塔旋轉(zhuǎn)間隔。圖 1 顯示了一個示意圖的互連基本組件在一個典型的盤式 ATC 裝置。在本研究中,我們模擬限制傳感器模擬自動工具的復(fù)雜連續(xù)的運動變化,包括炮塔裝置的驅(qū)動和運動。圖 5 仿真模型的一個提要積極限制傳感器驅(qū)動系統(tǒng)。圖 6 一個提要驅(qū)動系統(tǒng)的仿真結(jié)果積極限制傳感器。圖 7 ATC 炮塔的仿真模型。4。模擬的自動工具改變本研究構(gòu)建的仿真模型使用基于 Modelica Dymola 語言(勃拉克 et al . 2002 年)。模型的仿真模型由組件(如電機、齒輪的集合(齒輪箱))等對應(yīng)的功能。每個模型塊標準形式,其中包括輸入和輸出信號,模型參數(shù),和自己的方程式。該模型結(jié)構(gòu)容易實現(xiàn) Modelica 語言,因為語言是面向?qū)ο蟮?。模型的每個部分的屬性等參數(shù)和方程可以指定和修改使用圖形框圖界面或在一個文本文件中。模擬的操作限制傳感器在旋轉(zhuǎn)電機驅(qū)動的線性階段,我們聯(lián)合動態(tài)仿真模型的線性階段從先前的工作(Jeong et al . 2006 年)限制傳感器模型,如圖 3 所示。圖 5 顯示了總體仿真模塊,該模塊可用于遙感超程階段歸航,到達的位置工具改變操作。在這項研究中所使用的線性階段模型由模型塊對應(yīng)的速度和轉(zhuǎn)矩控制,一個簡單的直流電機,軸向聯(lián)合、導螺桿和導軌。積極的限制傳感器響應(yīng)瞬時表位置。的圖中顯示積極限制傳感器監(jiān)控表的位置。因此,飼料的表位置獲得或預(yù)測轉(zhuǎn)移到限制傳感器塊驅(qū)動仿真模型,方程(5)所示。限制傳感器模型塊比較轉(zhuǎn)移位置指定的限制傳感器位置。圖 6 顯示了模擬線性階段,傳感器操作控制電機速度時 60 rad / s。圖 6(a)顯示了電機速度和驅(qū)動電流、和圖 6(b)顯示了表和傳感器位置。注意,傳感器輸出從 0 變?yōu)?1 當表到達 0.1 米。傳感器的傳感器位置公差模型中被設(shè)置為 0。圖 8 ATC 炮塔操作的仿真結(jié)果。我們使用我們的 ATC 炮塔模型模擬 ATC 炮塔的性能。圖 7 顯示了 ATC 炮塔的實際仿真模型和恒定的命令。這表明兩個接近傳感器分別檢測螺栓和連接到炮塔磁盤。仿真模型顯示當前工具數(shù)量隨著炮塔角度變化。此外,兩個距離傳感器的輸出信號監(jiān)測的 PLC 內(nèi)核提供 CNC 控制器,控制 ATC 炮塔操作。仿真中使用的模型參數(shù)如表 1 所示,從改造小型加工中心(SPT-V30T,現(xiàn)代汽車(Hyundai Motor Co。)和一個炮塔類型 overhead-disk 雜志和一個基于 PC 的數(shù)控(HX TurboTek)。十四個工具裝置。圖 8(a)、(b)和(c)顯示仿真結(jié)果當工具改變從1 號到 12 號。更具體地說,圖 8(一個)顯示炮塔的旋轉(zhuǎn)角,不斷旋轉(zhuǎn)的動作等功能。圖 8(b)和(c)顯示的邏輯輸出接近傳感器連接到磁盤和等軸炮塔。從這些數(shù)據(jù)中我們可以看到接近傳感器的輸出的炮塔磁盤是相反的,接近傳感器等因為等對應(yīng)的旋轉(zhuǎn)炮塔的旋轉(zhuǎn)磁盤。我們比較仿真結(jié)果與實際行動炮塔運動。圖 9 顯示了這種比較的結(jié)果變化時間從第一個工具(工具 1)到最后一個工具。仿真結(jié)果在 2%的實際時間。我們推斷這個錯誤來自實際電機的速度變化和識別錯誤的仿真模型參數(shù)如電機速度和傳動比。圖 9 模擬和測量之間的比較結(jié)果 tool-to-tool 變更時間從第一個工具(工具 1)。圖 10。原理圖的實時仿真。我們介紹了實時仿真方法是否可以應(yīng)用于 PLC 邏輯驗證。我們設(shè)計了一個模擬循環(huán)在計算機實時內(nèi)核,分離軟件對控制器的仿真模型。圖 10 顯示了這個模擬的結(jié)構(gòu)。仿真回路由一個實際的控制器的軟件部分和一個動態(tài)鏈接庫(DLL)仿真模型的文件;這些相通通過共享內(nèi)存。控制器庫是由數(shù)控(NC)內(nèi)核控制驅(qū)動系統(tǒng)和 PLC 的內(nèi)核操作的離散系統(tǒng),如限制傳感器和 ATC 炮塔。仿真模型包括飼料驅(qū)動器和 ATC 炮塔模型在第三節(jié)中描述。我們監(jiān)控使用單獨的計算機仿真結(jié)果,以避免影響計算機運行的實時性能仿真循環(huán)。之間的連接控制器軟件和控制器之間的仿真模型是相同的,和實際的飼料驅(qū)動器的 ATC 炮塔,除了實際的線路被內(nèi)部數(shù)據(jù)通信所取代。提出的模擬進行了工業(yè)個人電腦(pxi - 8186 RT)的實時內(nèi)核,2.2 GHz Pentium 4 CPU 和 512 MB 的隨機存取存儲器。我們使用四階龍格-庫塔算法集成 0.5 毫秒的時間步長仿真??刂破鞲聲r間設(shè)置為 1 ms 提要驅(qū)動器和 4 ms ATC 炮塔。結(jié)論在這項研究中,我們開發(fā)了一個仿真模型的自動工具變換器使用炮塔雜志。W 使用面向?qū)ο蟮姆椒?gòu)建一個概括模型的基本組件的 ATC 炮塔模型作為單獨的塊,和連接在一起他們會在實際的 ATC 每一塊都有自己的參數(shù)和方程描述相應(yīng)的塊的運動。仿真結(jié)果表明,該方法生成的現(xiàn)實操作組件運動和傳感器信號。我們開發(fā)了一個三維可視化演示仿真結(jié)果。集成的仿真模型與實際機床控制器表明,我們的模型可以用于實時邏輯驗證為了減少走彎路和錯誤的設(shè)置問題。的實時仿真PLC 邏輯,模型成功地扮演了真正的 ATC 炮塔和飼料的角色。我們表明,我們的模型可以滿足實時要求,和計算時間的仿真循環(huán)時間不到 30 分之一。確認本研究得到了批準號 krf - 2004 - 202 - d00068 科技部。參考文獻[1].Baykasoglu,a . Dereli,T。,2004 年。啟發(fā)式優(yōu)化系統(tǒng)測定在索引位置數(shù)控雜志考慮刀具重復(fù)。國際期刊的生產(chǎn)研究,42(7),1281 - 1303。[2].勃拉克,D。,et al .,2002。Dymola multi-engineering 建模和仿真。:2號國際 Modelica 會議,55.1 - -55.8。[3].大衛(wèi),r 和真主安拉,H。,1994 年。佩特里網(wǎng)建模的動態(tài)系統(tǒng)調(diào)查。自動化,30(2),175 - 202。[4].Dereli、t 和 Filiz I.H.,2000 年。分配使用遺傳算法優(yōu)化索引位置工具雜志。機器人和自動化系統(tǒng),33 歲,155 - 167。[5].Erkorkmaz,k 和 Altintas,Y。,2001 年。高速數(shù)控系統(tǒng)的設(shè)計。第二部分:建模和識別飼料驅(qū)動器。國際期刊的機床和制造,41 歲,1487 - 1509。[6].Gokler,馬丁和 Koc M.B.,1997 年。設(shè)計一個自動工具變換器與圓盤雜志控臥式加工中心。國際期刊的機床和制造、37(3),277 - 286。哈里森,R。西,賴特,C.D.,2000 年。集機械設(shè)計和控制。國際計算機雜志 Iintegrated 制造、13(6),498 - 516。[7].侯賽因,學士學位,1998 年。一個造型機電一體化系統(tǒng)的系統(tǒng)方法。CIRP 年報,48(1),431 - 436。[8].宋,Y.H.分鐘,B.-K。曹,D.-W。,2006 年。估計機床飼料驅(qū)動傾向從電流測量和數(shù)學模型。國際期刊的機床和制造,46 歲,1343 - 1349。[9].Sheu, J.J. and Fu, T.C.,,2005 年。順序控制器的系統(tǒng)方法設(shè)計制造系統(tǒng)。國際先進制造技術(shù)雜志》上,25 歲,754 - 760。[10].張文雄,J.J.和傅,青木,2006 年。發(fā)展高速加工的智能虛擬現(xiàn)實系統(tǒng)。材料科學論壇,505 - 507,626 - 630。[11].Suh, S.-H., et al.,2003 年。建模和基于互聯(lián)網(wǎng)的虛擬機的實現(xiàn)工具。國際先進制造技術(shù)雜志,21 歲,516 - 522。