摘 要本次設(shè)計的加工卸料機(jī)械手設(shè)計用于 R175 型柴油機(jī)機(jī)體加工自動線上,主要由手爪、手腕、手臂、機(jī)身、機(jī)座等組成,具備上料、翻轉(zhuǎn)和轉(zhuǎn)位等多種功能,并按該自動線的統(tǒng)一生產(chǎn)節(jié)拍和生產(chǎn)綱領(lǐng)完成以上動作。本機(jī)械手機(jī)身采用機(jī)座式,自動線圍繞機(jī)座布置,其坐標(biāo)形式為球坐標(biāo)式,具有立柱旋轉(zhuǎn)、手臂伸縮、手臂俯仰、腕部轉(zhuǎn)動和腕部擺動 5 個自由度。驅(qū)動方式為液壓驅(qū)動,選用雙聯(lián)葉片泵,系統(tǒng)壓力為2.5MPa,電機(jī)功率為 5.5KW,共有整機(jī)回轉(zhuǎn)油缸、手臂俯仰油缸、手臂伸縮油缸、手腕擺動油缸、手腕回轉(zhuǎn)油缸、手爪夾緊油缸 6 個液壓缸。送放機(jī)構(gòu)的液壓驅(qū)動系統(tǒng)是由液壓基本回路組成,包括調(diào)壓回路,緩沖回路,調(diào)速回路,換向回路.鎖緊回路,保壓回路。定位采用機(jī)械擋塊定位,定位精度為 0.5~1mm,采用行程控制系統(tǒng)實(shí)現(xiàn)點(diǎn)位控制。關(guān)鍵詞: 機(jī)械手,球坐標(biāo),液壓,機(jī)械擋塊 ,點(diǎn)位控制ABSTRACTThe current design of multifunctional mechanical hand used for R175-type diesel organisms automatic processing line, mainly consist of claw, wrists, arms, body, base and so on. With moving the materials, turnover and transfer spaces, and many other functions, the automatic line with the unified production rhythms and production program completed more moves. With the automatic production line rhythms and the production of complete reunification of the above movements, automatic line is around the machine arrange, the coordinates of the ball coordinates of the form, with huge rotary, extendable arm, arm pitch, hitting and hitting back five moves freedom; Driven approach to hydraulic-driven, and the choice of double leaves pumps, the system pressure to 2.5MPa, 5.5KW electrical power for a total of whole sets of rotation tank, arm tilt cylinders, fuel tanks extendable arm, wrist swing tank, wrist rotation tank, claw clip tank six hydraulic oil tank; positioning a piece of machinery turned positioning, positioning accuracy for 0.5~1mm, using control systems to achieve their point spaces control. Key words: Mechanical hand, the ball coordinates, hydraulic, mechanical turned pieces, control point spaces目 錄第 1 章 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.1 執(zhí)行系統(tǒng).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.2 驅(qū)動系統(tǒng). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11.3 控制系統(tǒng). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2第 2 章 方案設(shè)計及主要參數(shù)的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32.1 方案設(shè)計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32.2 主要參數(shù)的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4第 3 章 抓取機(jī)構(gòu)的設(shè)計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53.1 抓取機(jī)構(gòu)結(jié)構(gòu)形式的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53.2 夾緊力(握力)的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53.3 夾緊缸驅(qū)動力的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73.4 夾鉗式抓取機(jī)構(gòu)的定位誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83.5 夾緊液壓缸主要尺寸的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.5.1 液壓缸內(nèi)徑 D 的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103.5.2 活塞桿直徑 d 的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113.5.3 液壓缸壁厚 δ 的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123.5.4 液壓缸外徑 D0 及長度 l 的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123.5.5 液壓缸行程 S 的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12第 4 章 送放機(jī)構(gòu)的設(shè)計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134.1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134.2 液壓系統(tǒng)主要參數(shù)的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144.2.1 液壓缸工作載荷的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154.2.2 液壓缸推力的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154.2.3 液壓缸流量的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154.2.4 液壓缸基本尺寸的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154.3 機(jī)械手的腕部設(shè)計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164.3.1 腕部結(jié)構(gòu)形式的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164.3.2 腕部回轉(zhuǎn)缸驅(qū)動力矩的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174.3.3 腕部回轉(zhuǎn)液壓缸尺寸的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214.3.4 腕部擺動缸驅(qū)動力矩的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224.3.5 腕部擺動液壓缸尺寸的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244.4 機(jī)械手的手臂和機(jī)身的設(shè)計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.4.1 手臂和機(jī)身結(jié)構(gòu)形式的確定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.4.2 手臂驅(qū)動力的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274.5 液壓系統(tǒng)元件的選擇. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.6 液壓系統(tǒng)回路的分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.6.1 調(diào)壓回路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.6.2 緩沖回路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324.6.3 調(diào)速回路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324.6.4 換向回路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334.6.5 鎖緊回路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334.6.6 保壓回路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33第 5 章 控制系統(tǒng)的設(shè)計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34參考文獻(xiàn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36附錄 1:科技論文翻譯. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37附錄 2:實(shí)習(xí)報告. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49XX 大學(xué)本科生畢業(yè)設(shè)計6XX 大學(xué)本科生畢業(yè)設(shè)計7第 1 章 概述機(jī)械手是模仿人手的部分動作,按給定程序、軌跡、和要求實(shí)現(xiàn)自動抓取,搬運(yùn)或操作動作的自動化機(jī)械裝置。在工業(yè)中應(yīng)用的機(jī)械手稱為“工業(yè)機(jī)械手” 。工業(yè)機(jī)械手由執(zhí)行系統(tǒng)、驅(qū)動系統(tǒng)和控制系統(tǒng)組成。執(zhí)行系統(tǒng)又可分為抓取,送放和機(jī)身三部分,如圖 1.1 所示1-執(zhí)行系統(tǒng) 2-控制系統(tǒng) 3-驅(qū)動系統(tǒng)a-手爪 b-手腕 c-手臂 d-機(jī)身 e-行走裝置圖 1.1 機(jī)械手的組成1.1 執(zhí)行系統(tǒng)執(zhí)行系統(tǒng)是直接握持物件實(shí)現(xiàn)所需的各種運(yùn)動的機(jī)械部分,它包括以下機(jī)構(gòu)(1)抓取機(jī)構(gòu) 抓取機(jī)構(gòu)又稱手部或手爪,是機(jī)械手直接與被抓取物件接觸并施加約束和加緊力的部分。(2)送放機(jī)構(gòu) 送放機(jī)構(gòu)是執(zhí)行系統(tǒng)中將被抓取物件送放到目的地的機(jī)械部分。它主要由手臂、手腕、行走裝置等部分組成。手臂是用來支撐腕部和手部并改變被送放物件的空間位置的。它是機(jī)械手的主要運(yùn)動部件。手腕主要是用來調(diào)整和改變被送放物件的方位,并連接手臂和手指。行走裝置的主要作用是擴(kuò)大機(jī)械手的送放范圍,以適應(yīng)遠(yuǎn)距離操作的需要。(3)機(jī)身 機(jī)身是機(jī)械手中用來支撐送放機(jī)構(gòu)的部件,也是安裝驅(qū)動系統(tǒng),控制系統(tǒng)的基礎(chǔ)部件。1.2 驅(qū)動系統(tǒng)XX 大學(xué)本科生畢業(yè)設(shè)計8機(jī)械手的驅(qū)動系統(tǒng)是為執(zhí)行系統(tǒng)各部分提供動力的裝置。驅(qū)動系統(tǒng)可分為液壓傳動、氣壓傳動、電力傳動和機(jī)械傳動等多種形式。液壓驅(qū)動系統(tǒng)主要由油泵,油缸,油壓閥機(jī)管路組成。1.3 控制系統(tǒng)機(jī)械手控制系統(tǒng)的功用是通過對驅(qū)動系統(tǒng)的控制使執(zhí)行系統(tǒng)按照規(guī)定的要求進(jìn)行工作,并檢測其工作位置正確與否。它主要包括程序控制和位置檢測等部分.程序控制裝置指揮機(jī)械手按規(guī)定的程序進(jìn)行運(yùn)動,并記憶人們給予機(jī)械手的指令信息(如動作順序,運(yùn)動軌跡,運(yùn)動速度,運(yùn)動時間等),同時按其控制系統(tǒng)的信息對執(zhí)行系統(tǒng)發(fā)出指令,必要時它還可對機(jī)械手的動作進(jìn)行監(jiān)視,當(dāng)動作有錯誤或發(fā)生故障時,即發(fā)出報警信號.信息檢測裝置主要用來控制機(jī)械手執(zhí)行系統(tǒng)的運(yùn)動位置,并隨時竟執(zhí)行系統(tǒng)的實(shí)際位置反饋給控制系統(tǒng),并與設(shè)定的位置進(jìn)行比較,然后通過控制系統(tǒng)進(jìn)行調(diào)整,從而使執(zhí)行系統(tǒng)以一定的精度達(dá)到設(shè)定位置.XX 大學(xué)本科生畢業(yè)設(shè)計9第 2 章 方案設(shè)計及主要參數(shù)的確定2.1 方案設(shè)計根據(jù)課題要求,機(jī)械手需要具備上料、翻轉(zhuǎn)和轉(zhuǎn)位等多種功能,并按該自動線的統(tǒng)一生產(chǎn)節(jié)拍和生產(chǎn)綱領(lǐng)完成以上動作,因此可采用以下多種設(shè)計方案。(1)直角坐標(biāo)系式,自動線成直線布置,機(jī)械手空中行走,順序完成上料、翻轉(zhuǎn)、轉(zhuǎn)位等功能。這種方案結(jié)構(gòu)簡單,自由度少,易于配線,但需要架空行走,油液站不能固定,這使設(shè)計復(fù)雜程度增加,運(yùn)動質(zhì)量增大。(2)機(jī)身采用立柱式,機(jī)械手側(cè)面行走,順序完成上料、翻轉(zhuǎn)、轉(zhuǎn)位等功能,自動線仍呈直線布置。這種方案可以集中設(shè)計液壓站,易于實(shí)現(xiàn)電氣、油路定點(diǎn)連接,但占地面積大,手臂懸伸量較大。(3)機(jī)身采用機(jī)座式,自動線圍繞機(jī)座布置,順序完成上料、翻轉(zhuǎn)、轉(zhuǎn)位等功能。這種案具有電液集中、占地面積小、可從地面抓取工件等優(yōu)點(diǎn),但配線要求較高。本設(shè)計擬采用第三種方案,如圖(1)所示。這是一種球坐標(biāo)式機(jī)械手,具有立柱旋轉(zhuǎn)⌒z、手臂伸縮→x、手臂俯仰⌒y、腕部轉(zhuǎn)動⌒x 和腕部擺動⌒y 五個自由度。XX 大學(xué)本科生畢業(yè)設(shè)計10圖 2.1 球坐標(biāo)式機(jī)械手2.2 主要參數(shù)的確定(1)抓取重量 15kg(2)坐標(biāo)形式和自由度 坐標(biāo)形式為球坐標(biāo)式,有五個自由度。(3)工作行程工作行程由已知條件及方案分析確定:最大工作半徑 1500mm;手臂最大中心高 1000mm;手臂水平中心高 700mm;手臂伸縮行程 450mm;手臂回轉(zhuǎn)范圍:φ=0~270○;手腕回轉(zhuǎn)范圍:翻轉(zhuǎn) θ=0~180○;腕部擺動范圍:轉(zhuǎn)位 α=0~90○;手臂上下擺動角度:β=0~60○。(4)運(yùn)動速度直線運(yùn)動速度:手臂伸縮行程 l=450mm,運(yùn)動時間 t=2s,則手臂伸縮速度為:v= =0.45/2=0.225m/s;tl回轉(zhuǎn)運(yùn)動速度:定為 60○/s。(5)驅(qū)動方式驅(qū)動方式采用液壓驅(qū)動的方式。由于機(jī)械手操作時各缸不同時工作,手臂伸縮缸和手臂回轉(zhuǎn)缸所需的流量大,其余各缸所需的流量均較小,因此可選用雙聯(lián)葉片泵。在小流量時,只需高壓小流量供油,大流量低壓泵卸荷;在大流量時,兩泵同時供,這樣可以減少系統(tǒng)功率損失,防止油溫升高。(6)定位精度定位采用機(jī)械擋塊定位,定位精度為 0.5~1mm。(7)控制方式采用行程控制系統(tǒng)實(shí)現(xiàn)點(diǎn)位控制。XX 大學(xué)本科生畢業(yè)設(shè)計11第 3 章 抓取機(jī)構(gòu)的設(shè)計3.1 抓取機(jī)構(gòu)結(jié)構(gòu)形式的確定抓取機(jī)構(gòu)的結(jié)構(gòu)形式主要決定于工件的形狀和質(zhì)量,本課題的抓取工件為250×170×140mm 的箱式零件,因此采用平行連桿杠桿式手部結(jié)構(gòu)較為合適。夾緊裝置為常開式,當(dāng)夾緊液壓缸通油時,推動活塞帶動杠桿機(jī)構(gòu)合攏將工件夾緊。當(dāng)夾緊液壓缸斷油時,活塞桿通過彈簧復(fù)位,手爪張開。3.2 夾緊力(握力)的確定當(dāng)用不同的手部機(jī)構(gòu)夾緊同一種工件時,由于各手部機(jī)構(gòu)的增力倍數(shù)不同,所需拉緊油缸的驅(qū)動力也不同。當(dāng)手部機(jī)構(gòu)選定后,由于工件的方位不同(如工件水平放置或垂直放置) ,鉗爪的受力狀態(tài)不一樣,因而所需拉緊油缸的驅(qū)動力也不一樣。下圖(2)為兩鉗爪式手部機(jī)構(gòu),由于驅(qū)動力 P 使一對平行鉗口對被夾持的工件產(chǎn)生兩個作用力 N,當(dāng)忽略工件重量時(即相當(dāng)于夾緊一塊握力表) ,這兩個力大小相等,力 N 稱為由驅(qū)動力 P 產(chǎn)生的夾緊力。圖 3.1 夾緊力現(xiàn)引入一個稱為“當(dāng)量夾緊力”的概念,所謂當(dāng)量夾緊力,就是指把重量為 G的工件,按某一方位夾緊可以求得其拉緊油缸具有的最小驅(qū)動力,這個最小驅(qū)動力所能產(chǎn)生的夾緊力,就稱為工件在這個方位的當(dāng)量夾緊力。當(dāng)量夾緊力的數(shù)值與具體的手部機(jī)構(gòu)方案無關(guān)。只與工件的重量 G 和它相對與鉗爪的放置方位有關(guān)。證明如下:(1)首先求驅(qū)動力 P 與夾緊力 N 的關(guān)系。當(dāng)驅(qū)動力推動活塞桿移動一小段距離dy 時,兩個鉗爪都相應(yīng)產(chǎn)生一微小轉(zhuǎn)角 dθ,依據(jù)虛功原理,驅(qū)動力 P 所做功(Pdy)和夾緊力 N 所做功應(yīng)相等,即?bddy??XX 大學(xué)本科生畢業(yè)設(shè)計12N= ?bdPy2(3.1)(2)當(dāng)量夾緊力與工件重量之關(guān)系。當(dāng)鉗爪水平夾緊重為 G 的工件時,根據(jù)工件的平衡條件∑F=0 可得R1=R2+G可以看出,上下鉗爪對工件的夾緊力并不相等,且隨驅(qū)動力的增大而增大,但R1 和 R2 的差值永遠(yuǎn)為工件之重量 G,如 R2=0,R1=G,驅(qū)動力最小。這個最小驅(qū)動力可以由下述方法求出: ?bdRdyP21'??將 R1=G,R2=0 代入上式得dyGP?'(3.2)由 所產(chǎn)生的夾緊力 ,即當(dāng)量夾緊力。將(2.2)式代入(2.1)式得'P'N212'' dybdybp????(3.3)從計算結(jié)果可以看出,當(dāng)量夾緊力 與具體的手部結(jié)構(gòu)方案無關(guān)。不同的手部'N機(jī)構(gòu)的增力倍數(shù)特性 不一樣,而當(dāng)量夾緊力與 無關(guān),只與工件的重量和它相dy?dy對于鉗爪的放置方位無關(guān)。由課題要求可知,本機(jī)械手水平夾持懸伸工件,示意如圖 3.2圖 3.2 握力示意圖查表得進(jìn)行握力計算:XX 大學(xué)本科生畢業(yè)設(shè)計13N= (3.4)GHL???????213式中 N——夾持工件時所需的握力;G——工件的重量,G=15kg=150N;L、H——尺寸,L=50mm,H=80mm。將上述數(shù)值代入得N= N25.36102853????????? 考慮到工件在傳送過程中還會產(chǎn)生慣性力、振動以及受到傳力機(jī)構(gòu)效率等的影響,故而實(shí)際握力還應(yīng)按以下計算:N 實(shí) ≥ ?21KN?(3.5)式中,η——手部的機(jī)械效率,一般 η=0.85~0.95;k1——安全系數(shù),一般取 k1=1.2~2;k2——工作情況系數(shù),主要考慮慣性力的影響,按下式估算:k2=1+α/g,其中,α 為被抓取工件傳送過程中的最大加速度,g 為重力加速度。若取 η=0.9;k1=1.5;k2 按 α= g/2 計算,k2=1+α/g=1.5,則N 實(shí) ≥ =356.25×1.5×1.5/0.9≈890N?21K?3.3 夾緊缸驅(qū)動力的計算抓取機(jī)構(gòu)產(chǎn)生的握力是通過驅(qū)動裝置產(chǎn)生的驅(qū)動力經(jīng)傳動機(jī)構(gòu)傳遞而得到的。如圖 3.3 所示為夾緊缸受力分析簡圖,圖中 P 為驅(qū)動力,N 實(shí)為握力。由圖 3.4 和圖3.5 的受力分析可得P=2Rsinα (3.6)Rh=LCD R|因?yàn)?h=l BCcosδ=l BCcos(180○ -β-γ+α)= lBCcos(β+γ-α) (長度取正值)R|= N 實(shí) cosβXX 大學(xué)本科生畢業(yè)設(shè)計14所以 P=2Rsinα= 實(shí)NlBCD???)cos(in2???由結(jié)構(gòu)設(shè)計,確定 α=10 ○ ,γ=120 ○ ,β=50 ○ ,l CD=130mm,l BC=36mm,代入上式得(長度取正直)N763890936.042172???圖 3.3 夾緊缸受力分析簡圖P實(shí)δ βγ圖 3.4 圖 3.5XX 大學(xué)本科生畢業(yè)設(shè)計153.4 夾鉗式抓取機(jī)構(gòu)的定位誤差分析圖 3.6 所示的為一支點(diǎn)回轉(zhuǎn)型手指的示意圖。圖示情況為分別夾持兩種不同直徑的工件時的情況。其中, 為手指長度,即手指的回轉(zhuǎn)中心 A 到 V 形槽頂點(diǎn) B 之ABl間的距離; 為 V 形槽的夾角; 為偏轉(zhuǎn)角,即 V 形槽的角平分線 BC 與手指 AB 間?2?的夾角;R 為工件的半徑。圖 3.6工件的中心 C 與手指的回轉(zhuǎn)中心 A 之間的距離 x 可由下式求得: ????cosin2sincos222 ?????????????????? RlRlllx ABBBCABA將上式整理后得????222 sicosisin1ABABllx?或 ????1sincsin22 ???ABABlRlx此式為雙曲線方程,其曲線如圖 3.7 所示。圖中曲線表示了 X 隨 R 變化的關(guān)系,而且 X 的變化是以 R0 為分界線左右對稱的。當(dāng)工件的半徑由 Rmax 變化到 Rmin 時,X 的最大變化量即為定位誤差 ,其值為?XX 大學(xué)本科生畢業(yè)設(shè)計16?????? cosinm2sincosinmax2sinax22 ??????????????????????????????? RlRlRlRl ABABABAB圖 3.7在設(shè)計手指時,只要給定手指的長度 ,選取合適的偏轉(zhuǎn)角 β,即可根據(jù)工件ABl的最大直徑 Rmax 和最小直徑 Rmin 確定定位誤差。為了減少定位誤差,可加大手指的長度,會使結(jié)構(gòu)增大,重量增加。另外,選擇最佳的偏轉(zhuǎn)角 β,也可使定位誤差最小。當(dāng) R 等于平均半徑 Rm 時,定位誤差最小,此時??????????2minaxRelRlRl lll ABABAB ???sincosin2sin iiaximi22 ?????????????????式中, ——最佳偏轉(zhuǎn)角。e?3.5 夾緊液壓缸主要尺寸的確定3.5.1 液壓缸內(nèi)徑 D 的計算由單桿活塞式液壓缸的推力公式:(3.7)1pAF?式中, ——液壓缸的推力(N); 1Fp——系統(tǒng)的工作壓力,p=2.5Mpa=2.5N/mm 2;XX 大學(xué)本科生畢業(yè)設(shè)計17——活塞的作用面積(mm 2)1A=1A24D?D——活塞直徑(mm) 。推導(dǎo)得出:D=1.13 (3.8)mpF?1式中, ——驅(qū)動力,即液壓缸的實(shí)際工作載荷(N) ;1Fp——系統(tǒng)的工作壓力,p=2.5Mpa=2.5N/mm 2;ηm——機(jī)械效率,一般取 ηm=0.95;D——液壓缸內(nèi)徑(mm) 。將上述數(shù)值代入得D=1.13 m25.09.52763??按 GB/T2348-1993 標(biāo)準(zhǔn)系列直徑圓整,取 D=32mm。3.5.2 活塞桿直徑 d 的計算根據(jù)速度比的要求來計算活塞桿直徑 d(3.9)?1??D式中 ,d——活塞桿直徑(mm) ;D——液壓缸直徑(mm) ;——速度比:?212dDv???——活塞桿的縮入速度(mm/min) ;2v——活塞桿的伸出速度(mm/min) 。1液壓缸的往復(fù)運(yùn)動速度比,與系統(tǒng)工作壓力的關(guān)系如下 表 3.1工作壓力 p/MPa ≤10 12.5~20 >20速度比 φ 1.33 1.46;2 2由于本次設(shè)計的液壓系統(tǒng)工作壓力為 2.5MPa,故選用速度比 φ 為 1.33。XX 大學(xué)本科生畢業(yè)設(shè)計18不同速度比時活塞桿直徑 d 和液壓缸內(nèi)徑 D 的關(guān)系如下 表 3.2:φ 1.15 1.25 1.33 1.46 2d 0.36D 0.45D 0.5D 0.56D 0.71D按 GB/T2348-1993 標(biāo)準(zhǔn)系列直徑圓整,取 d=14mm。3.5.3 液壓缸壁厚 δ 的計算對于低壓系統(tǒng),液壓缸缸筒厚度一般按薄壁筒計算:(3.10)????2Dp?式中,δ——液壓缸缸筒厚度(mm) ;——試驗(yàn)壓力(MPa) ,工作壓力 p≤16MPa 時, =1.5p;工作壓力p pp≥16MPa 時, =1.25p,由于本次設(shè)計的液壓系統(tǒng)壓力為 2.5MPa,故=1.5×2.5=3.75Mpa;pD——液壓缸內(nèi)徑(mm) ;——缸材料體的許用應(yīng)力(MPa):?????nb??——缸體材料的抗拉強(qiáng)度(MPa) ;bn——安全系數(shù),n=3.5~5,一般取 n=5。對于:鍛鋼 =100~120 MPa???鑄鋼 =100~110 MPa鋼管 =100~110 MPa鑄鐵 =60 MPa??現(xiàn) 選用鑄鐵材料, =60Mpa。??將以知數(shù)據(jù)代入上式得 m1602375.???因結(jié)構(gòu)設(shè)計需要,取 =10mm。3.5.4 液壓缸外徑 D0及長度 l 的計算 52=10+3 2=0?L≤(20~30)D0,由結(jié)構(gòu)需要確定,取 l=60mm。3.5.5 液壓缸行程 S 的確定XX 大學(xué)本科生畢業(yè)設(shè)計19根據(jù)課題要求以及機(jī)構(gòu)的運(yùn)動要求按 GB/T2349-1980 標(biāo)準(zhǔn)系列確定液壓缸活塞行程為 450mm。第 4 章 送放機(jī)構(gòu)的設(shè)計4.1 概述(1)送放運(yùn)動改變被抓取物體的位置和方向,并將其送放到一定的目的位置上,這一運(yùn)動過程稱為送放運(yùn)動。送放運(yùn)動是機(jī)械手或機(jī)器人或機(jī)器人最主要的運(yùn)動,包括手臂、手腕和行走裝置的運(yùn)動,但不包括機(jī)械手或機(jī)器人手爪抓取物體的動作。因此,抓取動作只具有抓取功能,不能改變被抓取物的位置和方向,因而不是送放運(yùn)動。送放運(yùn)動又可分為主運(yùn)動和輔運(yùn)動兩部分,手臂的運(yùn)動為主運(yùn)動,手腕的運(yùn)動和整機(jī)的行走運(yùn)動為輔運(yùn)動。主運(yùn)動決定送放運(yùn)動的空間范圍的形狀和性質(zhì),輔運(yùn)動可擴(kuò)大送放運(yùn)動或改變被送放物體在空間的方位。(2)送放范圍機(jī)械手或機(jī)器人將被抓取的物體送放到某一位置,其所能達(dá)到的空間范圍稱為機(jī)械手或機(jī)器人的送放范圍。當(dāng)送放位置為一點(diǎn)時,稱為點(diǎn)位送放;當(dāng)送放位置在一個確定的表面內(nèi)(如矩形面、扇形面、圓柱面)時,這樣的送放范圍稱為面位送放;當(dāng)送法的位置在一個確定的空間體內(nèi)(如長方體、圓柱體、球體、多球體)時,這樣的送放范圍稱為體位送放。點(diǎn)位送放、面位送放、體位送放均由主運(yùn)動的運(yùn)動形式、自由度及其組合來決定。(3)送放圖形送放范圍可用送放圖形(送放運(yùn)動的軌跡或空間的形狀及大?。﹣砻枋觥|c(diǎn)位送放的送放位置為確定的點(diǎn),其主運(yùn)動只有一個自由度。其運(yùn)動形式為直線運(yùn)動時,送放圖形為一直線;為回轉(zhuǎn)運(yùn)動時,送放圖形為一圓?。粸閺?fù)合運(yùn)動,送放圖形為一空間曲線。面位送放,其送放圖形為一確定的表面,由兩個參變量決定,故主運(yùn)動需要兩個自由度。其送放圖形為三種不同的情況:兩個直線運(yùn)動組合,送放圖形為一矩形面;兩個回轉(zhuǎn)運(yùn)動組合時,送放圖形為一圓弧面;一個直線運(yùn)動和一個回轉(zhuǎn)運(yùn)動組合時,送放圖形為一扇形面(如手臂伸縮和手臂回轉(zhuǎn)組合)或圓柱面(如手臂升降和手臂回轉(zhuǎn)組合。體位送放,其送放圖形為一個確定的空間體,故主運(yùn)動有三個自由度。其送放XX 大學(xué)本科生畢業(yè)設(shè)計20圖形也有幾種不同的情況:三個直線運(yùn)動組合時,送放圖形為一空間立方體;兩個直線運(yùn)動和一個回轉(zhuǎn)運(yùn)動組合時,送放圖形為一空間圓柱體;兩個回轉(zhuǎn)運(yùn)動和一個直線運(yùn)動組合是,送放圖形為一空間組合體;三個回轉(zhuǎn)運(yùn)動組合時,送放圖形為空間球體或多球體。(4)送放運(yùn)動的自由度送放運(yùn)動具有的獨(dú)立運(yùn)動參數(shù)的數(shù)目,即送放運(yùn)動的自由度,亦即機(jī)械手或機(jī)器人的自由度。它等于主運(yùn)動自由度數(shù)和輔運(yùn)動自由度數(shù)之和。一般情況下,主運(yùn)動有 1~3 個自由度:當(dāng)主運(yùn)動有 1 個自由度時,送放圖形為點(diǎn)位送放;當(dāng)主運(yùn)動有2 個自由度時,送放圖形為面位送放;當(dāng)主運(yùn)動有 3 個自由度時,送放圖形為體位送放。如果采用多關(guān)節(jié)的送放機(jī)構(gòu),則機(jī)械手的主運(yùn)動自由度數(shù)還可以增加,但其結(jié)構(gòu)非常復(fù)雜,故實(shí)際應(yīng)用不多。此時,宜采用增設(shè)輔運(yùn)動的方法來增加機(jī)械手的功能,如增加腕部的平移或整機(jī)的行走運(yùn)動以擴(kuò)大送放范圍,或增設(shè)腕部的回轉(zhuǎn)和擺動運(yùn)動以改變被送放物的方位。機(jī)械手有幾個自由度就說明有幾個送放運(yùn)動。自由度越多,送放動作也越多,則機(jī)械手越靈活,其送放范圍也越大,但機(jī)械手也越復(fù)雜。本次所設(shè)計的機(jī)械手的送放機(jī)構(gòu)共有 5 個自由度,即主運(yùn)動有 3 個自由度(手臂的伸縮、回轉(zhuǎn)、俯仰) 、輔助運(yùn)動有 2 個自由度(腕部的回轉(zhuǎn)、擺動) ,為體位送放,全部采用液壓驅(qū)動,分別由兩個直動液壓和三個回轉(zhuǎn)液壓缸來實(shí)現(xiàn)。機(jī)械手液壓系統(tǒng)的工作原理圖如下圖 4.1 所示:圖 4.1 液壓系統(tǒng)的工作原理圖XX 大學(xué)本科生畢業(yè)設(shè)計214.2 液壓系統(tǒng)主要參數(shù)的確定4.2.1.液壓缸工作載荷的確定R= Rt+Rf Rm (4.1)?Rt=Rw Rg (4.2)式中,R——液壓缸的工作載荷;Rw——液壓缸軸線方向上的外作用力;Rg——液壓缸軸線方向上的重力;Rf——運(yùn)動部件的摩擦力;Rm——運(yùn)動部件的慣性力。非標(biāo)準(zhǔn)機(jī)械的液壓缸設(shè)計,按實(shí)際計算出工作壓力后,還應(yīng)符合液壓缸額定工作壓力系列標(biāo)準(zhǔn)規(guī)定(JB2183-77) ,本設(shè)計確定的系統(tǒng)工作壓力為 2.5Mpa。4.2.2.液壓缸推力的確定當(dāng)液壓缸工作壓力確定之后,即可計算出液壓缸的推力。對于活塞式液壓缸,液壓缸的推力為P=pA (4.3)式中,p——系統(tǒng)的工作壓力;A——活塞的有效工作面積。XX 大學(xué)本科生畢業(yè)設(shè)計224.2.3.液壓缸流量的計算液壓缸的工作流量為q=Av (4.4)式中,v——液壓缸或活塞桿的速度;A——液壓缸的有效工作面積。因此,只要確定出液壓缸的直徑 D,就可求出活塞或液壓缸的有效工作面積,從而可求得液壓缸的推力和流量?;蛘?,根據(jù)各缸的實(shí)際工作載荷 P,先求出活塞或液壓缸的有效工作面積 A,再確定各缸的直徑 D。4.2.4.液壓缸基本尺寸的確定(1)活塞缸直徑 D 的確定無桿腔工作時:D= (4.5))()(42121pdPRm???有桿腔工作時:D= (4.6))()(42121pdm?式中, ——系統(tǒng)的工作壓力, =2.5Mpa;1PP——回油腔的壓力;2——機(jī)械效率,一般取 =0.95;m?m?——液壓缸的工作載荷;R——活塞桿的直徑。d按上式計算后,還應(yīng)按 JB2183-77 取規(guī)定系列的直徑值。(2)活塞桿直徑 d 的確定活塞桿直徑可按工作壓力確定,對于常用速比的液壓缸也可根據(jù)已定的缸徑 D查下表:液壓缸工作壓力(MPa) ≤5 5~7 >7活塞桿直徑 d (0.5~0.6)D (0.6~0.7)D 0.7D另外,當(dāng)液壓缸速度在 6~10 m/s 左右時,也可按活塞往返的工作速度之比來確定活塞桿直徑:d=D ,其中 =?1?12v速比 與工作壓力有如下關(guān)系:?工作壓力(MPa ) ≤1.0 1.2520 >20速比 1.33 1.46~2 2(3)液壓缸壁厚 δ 的確定XX 大學(xué)本科生畢業(yè)設(shè)計23δ= ???2Dp式中, ——試驗(yàn)壓力;pD ——液壓缸直徑;——缸體材料的許用應(yīng)力。???(4)液壓缸外徑 D0 及長度 l 的確定D0=D+2δl≤(20~30)D 0缸體長度 l 根據(jù)上式由活塞行程來確定,并注意缸體的制造工藝性和經(jīng)濟(jì)性。4.3 機(jī)械手的腕部設(shè)計4.3.1 腕部結(jié)構(gòu)形式的確定工業(yè)機(jī)器人的腕部是聯(lián)接手部與臂部的部件,起支承手部的作用,為了使手部處于空間任意方向,要求腕部能實(shí)現(xiàn)對空間三個坐標(biāo)軸 X、Y、Z 的轉(zhuǎn)動,即具有回轉(zhuǎn)、俯仰和擺動三個自由度。腕部實(shí)際所具有的自由度數(shù)目應(yīng)根據(jù)機(jī)器人的工作性能要求來確定。在多數(shù)情況下,腕部具有兩個自由度:回轉(zhuǎn)和俯仰或擺動。一些專業(yè)機(jī)械手甚至沒有腕部,但有的腕部為了特殊要求還有橫向移動自由度。本機(jī)械手腕部具有兩個自由度,因此采用兩個回轉(zhuǎn)油缸,即回轉(zhuǎn)和擺動,且回轉(zhuǎn)范圍為 0~180 ○ ,擺動范圍為 0~90 ○ ?;剞D(zhuǎn)油缸和擺動油缸的結(jié)構(gòu)圖分別如圖4.2 和圖 4.3 所示: ecd圖 4.2XX 大學(xué)本科生畢業(yè)設(shè)計24圖 4.34.3.2 腕部回轉(zhuǎn)缸驅(qū)動力矩的計算實(shí)現(xiàn)上述運(yùn)動的驅(qū)動力必須克服腕部啟動時所需的慣性力矩、腕部回轉(zhuǎn)軸與支承處的摩擦力矩、動片與缸壁和端蓋等處密封裝置的摩擦力矩,以及由于轉(zhuǎn)動部件重心與轉(zhuǎn)動軸心線不重合所產(chǎn)生的偏重力矩,圖 4.4 所示為腕部受力分析。圖 4.4腕部轉(zhuǎn)動時必須克服三種力矩—— 、 和 ,故手腕的回轉(zhuǎn)力矩 M 至摩M偏 慣少應(yīng)為:(4.7))(慣偏摩 mN???考慮到驅(qū)動缸密封摩擦損失等因素,一般將 M 取大一些,可取??)(慣偏摩 2.1XX 大學(xué)本科生畢業(yè)設(shè)計25式中,M——驅(qū)動力矩;M 慣——慣性力矩;M 偏——參與轉(zhuǎn)動的零部件的重量(包括工件、手部及腕部的回轉(zhuǎn)缸動片等)對轉(zhuǎn)動軸線所產(chǎn)生的偏重力矩;M 摩——腕部回轉(zhuǎn)與支承處的摩擦力矩;以上各力矩的分析計算如下:1)腕部加速運(yùn)動時所產(chǎn)生的慣性力矩 M 慣若手部啟動時按等加速運(yùn)動,角速度為 w,啟動過程所用的時間為 ,啟動過t?程所轉(zhuǎn)過的角度為 ,則??tJ????)(慣 1或 ?????21)(慣 JM(4.8)式中,J——腕部參與轉(zhuǎn)動的各部件對回轉(zhuǎn)軸的轉(zhuǎn)動慣量;J1——工件對腕部回轉(zhuǎn)軸的轉(zhuǎn)動慣量;——腕部轉(zhuǎn)動的角速度;?——啟動過程所需的時間,一般為 0.01~0.5(s) ,這里取 0.1;t?——啟動過程所轉(zhuǎn)過的角度。?若工件的重心與回轉(zhuǎn)軸不重合,則轉(zhuǎn)動慣量為(4.9)211egGJc??式中, ——工件對重心軸線的轉(zhuǎn)動慣量;Jc——工件的重量;1G——工件重心到回轉(zhuǎn)軸的偏心距;eg——重力加速度。本機(jī)械手腕部參與轉(zhuǎn)動的各部件的轉(zhuǎn)動慣量如下:回轉(zhuǎn)軸:對其重量進(jìn)行估算,定小直徑段為 ,大直徑段為 ,即1G2??NGhgr 864.0916410254.3108.7 15.3232 32321 ???????????????????查表得其轉(zhuǎn)動慣量為XX 大學(xué)本科生畢業(yè)設(shè)計26??2622221 104.015.8.96405.8.91 mkgRgG ???????????????????? ?連接板:對其重量進(jìn)行估算,即 ??Nhr 73.0102614.30.73232 ???????????????查表得其轉(zhuǎn)動慣量為 ????262221 10.0.75.89mkgRgG??????液壓缸:對其重量進(jìn)行估算,即 ??Nhr 2.158.9041254.310.73232 ??????????????查表得其轉(zhuǎn)動慣量為 ??2622 105.807.895mkgRgG???手爪:對其重量進(jìn)行估算,即 ??Nhr 6.258.9107102784.310.73232 ???????????????查表得其轉(zhuǎn)動慣量為 2622 10.9803.8965mkgRgG????故腕部參與轉(zhuǎn)動的各部件的轉(zhuǎn)動慣量和為: ????266.241.56.20.1.4J k???? ??工件對腕部回轉(zhuǎn)軸的轉(zhuǎn)動慣量為: ??222222 .1.017.5.08911 mkgcbagGJ ????由以上計算得腕部加速運(yùn)動時所產(chǎn)生的慣性力矩為: ????N????7.14.032.064.M?慣2)腕部轉(zhuǎn)動時在軸頸處的摩擦力矩 M 摩?121dRfBA?摩XX 大學(xué)本科生畢業(yè)設(shè)計27式中,d1、d2——腕部軸頸的直徑(參見圖 10) ;f——軸承的摩擦系數(shù),對于滾動軸承,f=0.01,對于滑動軸承,f=0.1;RA、R B——軸頸處的支撐反力。按腕部轉(zhuǎn)動軸的受力分析求解 RA 和 RB。根據(jù) ,得??0??FMA123lGl??即 NlGRB 61065.032.78.150321 ???????同理,根據(jù) ,得??0?FM??????NlllGA 8.37065. 02.65.0.265.278.15031 ?????????式中, 、 、 ——工件、手部、腕部的重量;123、 、 、 ——尺寸,見圖 10。ll故 ????mNdRfMBA ???????? 013.5.6105.83701.2212摩3)工件重心偏置引起的偏重力矩 M 偏M 偏 =G1e (4.10)式中,G1——工件重量(N) ;e——偏心距。由于本課題的工件為 250×170×140mm 的箱式零件,即為對稱的零件,因此工件重心與手腕回轉(zhuǎn)中心線重合,也就是偏心距為零,故 M 偏為零。因此腕部轉(zhuǎn)動時所需的驅(qū)動力矩為: ????)(慣偏摩 mNM M??????? 6.17.4013.22.1又腕部回轉(zhuǎn)缸的驅(qū)動力矩 M 與回轉(zhuǎn)缸的壓力 p 的關(guān)系為:(4.11)2rRb?式中,M——回轉(zhuǎn)缸的驅(qū)動力矩;XX 大學(xué)本科生畢業(yè)設(shè)計28P——回轉(zhuǎn)缸的工作壓力;R——缸體內(nèi)壁半徑;r——輸出軸半徑;b——動片寬度。上述驅(qū)動力矩 M 與壓力 p 的關(guān)系式是對應(yīng)與壓力腔的背壓為零時的情況而言的,若低壓腔有一定的背壓,則 P 為工作壓力與背壓的差值。4.3.3 腕部回轉(zhuǎn)液壓缸尺寸的確定1)液壓缸內(nèi)徑的確定由上式腕部回轉(zhuǎn)缸的驅(qū)動力矩 M 與回轉(zhuǎn)缸的壓力 p 的關(guān)系推導(dǎo)得缸體內(nèi)壁半徑為; mrPb86.25.125.06172R3?????其中輸出軸半徑 r 由結(jié)構(gòu)設(shè)計定為 12.5mm。查表按標(biāo)準(zhǔn)系列圓整,取 R=32.5mm,即回轉(zhuǎn)液壓缸內(nèi)徑為 65mm。2)液壓缸壁厚 δ 的計算對于低壓系統(tǒng),液壓缸缸筒厚度一般按薄壁筒計算:(4.12)????2Dp?式中,δ——液壓缸缸筒厚度(mm) ;——試驗(yàn)壓力(MPa) ,工作壓力 p≤16MPa 時, =1.5p;工作壓力p pp≥16MPa 時, =1.25p,由于本次設(shè)計的液壓系統(tǒng)壓力為 2.5MPa,故p=1.5×2.5=3.75Mpa;pD——液壓缸內(nèi)徑(mm) ;——缸材料體的許用應(yīng)力(MPa):???(4.13)??nb??——缸體材料的抗拉強(qiáng)度(MPa) ;b?n——安全系數(shù),n=3.5~5,一般取 n=5。對于:鍛鋼 =100~120 MPa??鑄鋼 =100~110 MPaXX 大學(xué)本科生畢業(yè)設(shè)計29鋼管 =100~110 MPa???鑄鐵 =60 MPa現(xiàn) 選用鑄鐵材料, =60Mpa。???將以知數(shù)據(jù)代入上式得 m03.2657.3???因結(jié)構(gòu)設(shè)計需要,取 =17.5mm。3)液壓缸外徑 D0 及寬度 b 的計算 10=5.72+ D=0?b≤(20~30)D0,由結(jié)構(gòu)需要確定,取 b=30mm。4)回轉(zhuǎn)液壓缸回轉(zhuǎn)行程的確定由方案設(shè)計可知,腕部回轉(zhuǎn)行程 0~180 ○ ,其結(jié)構(gòu)形式見圖 4.2。4.3.4.腕部擺動缸驅(qū)動力矩的計算與回轉(zhuǎn)液壓缸的計算類似,腕部擺動時也必須克服三種力矩—— 、 和摩M偏,故手腕的擺動力矩 M 至少應(yīng)為:慣M)(慣偏摩 mN???同樣考慮到驅(qū)動缸密封摩擦損失等因素,一般將 M 取大一些,可?。?.14)??)(慣偏摩 2.1式中,M——驅(qū)動力矩;M 慣——慣性力矩;M 偏——參與轉(zhuǎn)動的零部件的重量(包括工件、手部及腕部的回轉(zhuǎn)缸動片等)對轉(zhuǎn)動軸線所產(chǎn)生的偏重力矩;M 摩——腕部擺動與支承處的摩擦力矩;以上各力矩的分析計算如下:1)腕部加速運(yùn)動時所產(chǎn)生的慣性力矩 M 慣若手部啟動時按等加速運(yùn)動,角速度為 w,啟動過程所用的時間為 ,啟動過t?程所轉(zhuǎn)過的角度為 ,則??tJ????)(慣 1或 ?????21)(慣 JM(4.15)式中,J——腕部參與轉(zhuǎn)動的各部件對回轉(zhuǎn)軸的轉(zhuǎn)動慣量;XX 大學(xué)本科生畢業(yè)設(shè)計30J1——工件對腕部回轉(zhuǎn)軸的轉(zhuǎn)動慣量;——腕部轉(zhuǎn)動的角速度;?——啟動過程所需的時間,一般為 0.01~0.5(s) ,這里取 0.2;t?——啟動過程所轉(zhuǎn)過的角度。?若工件的重心與回轉(zhuǎn)軸不重合,則轉(zhuǎn)動慣量為(4.16)211egGJc??式中, ——工件對重心軸線的轉(zhuǎn)動慣量;Jc——工件的重量;1G——工件重心到回轉(zhuǎn)軸的偏心距;eg——重力加速度。由腕部回轉(zhuǎn)運(yùn)動計算可知,腕部參與轉(zhuǎn)動的各部件對回轉(zhuǎn)軸的轉(zhuǎn)動慣量相對工件對腕部回轉(zhuǎn)軸的轉(zhuǎn)動慣量要小的多,因此在此僅計算工件對腕部回轉(zhuǎn)軸的轉(zhuǎn)動慣量。工件對腕部回轉(zhuǎn)軸的轉(zhuǎn)動慣量為: ??????22222 4.1.017.5.08911 mkgcbagGJc ???????由于擺動液壓缸工作時,工件的重心與回轉(zhuǎn)軸不重合,則由以上分析得轉(zhuǎn)動慣量為 ??22211 4.6.054. mkgegGJc ??????由以上計算得腕部加速運(yùn)動時所產(chǎn)生的慣性力矩為: ??mN???75.2.034M?慣2)腕部轉(zhuǎn)動時在軸頸處的摩擦力矩 M 摩腕部轉(zhuǎn)動時在軸頸處的摩擦力矩公式為(4.17)??121dRfBA??摩由由腕部回轉(zhuǎn)運(yùn)動計算可知,腕部轉(zhuǎn)動時在軸頸處的摩擦力矩相對與其他力矩要小的多,故此不在計算。3)工件重心偏置引起的偏重力矩 M 偏