《吉林省東北師范大學(xué)附屬中學(xué)2020年高中數(shù)學(xué) 3.1.3 概率的基本性質(zhì)教案 理 新人教A必修3》由會(huì)員分享,可在線閱讀,更多相關(guān)《吉林省東北師范大學(xué)附屬中學(xué)2020年高中數(shù)學(xué) 3.1.3 概率的基本性質(zhì)教案 理 新人教A必修3(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、3.1.3 概率的基本性質(zhì)
一、教學(xué)目標(biāo):
1、知識與技能:(1)正確理解事件的包含、并事件、交事件、相等事件,以及互斥事件、對立事件的概念;
(2)概率的幾個(gè)基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
(3)正確理解和事件與積事件,以及互斥事件與對立事件的區(qū)別與聯(lián)系.
2、過程與方法:通過事件的關(guān)系、運(yùn)算與集合的關(guān)系、運(yùn)算進(jìn)行類比學(xué)習(xí),培養(yǎng)學(xué)生的類化與歸納
2、的數(shù)學(xué)思想。
3、情感態(tài)度與價(jià)值觀:通過數(shù)學(xué)活動(dòng),了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數(shù)學(xué)知識應(yīng)用于現(xiàn)實(shí)世界的具體情境,從而激發(fā)學(xué)習(xí) 數(shù)學(xué)的情趣。
二、重點(diǎn)與難點(diǎn):概率的加法公式及其應(yīng)用,事件的關(guān)系與運(yùn)算。
三、學(xué)法與教學(xué)用具:1、討論法,師生共同討論,從而使加深學(xué)生對概率基本性質(zhì)的理解和認(rèn)識;2、教學(xué)用具:投燈片
四、教學(xué)設(shè)想:
1、 創(chuàng)設(shè)情境:(1)集合有相等、包含關(guān)系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;
(2)在擲骰子試驗(yàn)中,可以定義許多事件如:C1={出現(xiàn)1點(diǎn)},C2={出現(xiàn)2點(diǎn)},C3={出現(xiàn)1點(diǎn)或2點(diǎn)},C4={出現(xiàn)的點(diǎn)數(shù)為偶數(shù)}……
師生共同
3、討論:觀察上例,類比集合與集合的關(guān)系、運(yùn)算,你能發(fā)現(xiàn)事件的關(guān)系與運(yùn)算嗎?
2、 基本概念:(1)事件的包含、并事件、交事件、相等事件見課本P115;
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).
3、 例題分析:
例1 一個(gè)射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立
4、事件?
事件A:命中環(huán)數(shù)大于7環(huán); 事件B:命中環(huán)數(shù)為10環(huán);
事件C:命中環(huán)數(shù)小于6環(huán); 事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán).
分析:要判斷所給事件是對立還是互斥,首先將兩個(gè)概念的聯(lián)系與區(qū)別弄清楚,互斥事件是指不可能同時(shí)發(fā)生的兩事件,而對立事件是建立在互斥事件的基礎(chǔ)上,兩個(gè)事件中一個(gè)不發(fā)生,另一個(gè)必發(fā)生。
解:A與C互斥(不可能同時(shí)發(fā)生),B與C互斥,C與D互斥,C與D是對立事件(至少一個(gè)發(fā)生).
例2 拋擲一骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為“出現(xiàn)奇數(shù)點(diǎn)”,B為“出現(xiàn)偶數(shù)點(diǎn)”,已知P(A)=,P(B)=,求出“出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)”.
5、
分析:拋擲骰子,事件“出現(xiàn)奇數(shù)點(diǎn)”和“出現(xiàn)偶數(shù)點(diǎn)”是彼此互斥的,可用運(yùn)用概率的加法公式求解.
解:記“出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)”為事件C,則C=A∪B,因?yàn)锳、B是互斥事件,所以P(C)=P(A)+ P(B)=+=1
答:出現(xiàn)奇數(shù)點(diǎn)或偶數(shù)點(diǎn)的概率為1
例3 如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是,取到方塊(事件B)的概率是,問:
(1)取到紅色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
分析:事件C是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解,事件C與事件D是對立事件,因此P(D)=1—P(C)
6、.
解:(1)P(C)=P(A)+ P(B)=(2)P(D)=1—P(C)=
例4 袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率為,得到黑球或黃球的概率是,得到黃球或綠球的概率也是,試求得到黑球、得到黃球、得到綠球的概率各是多少?
分析:利用方程的思想及互斥事件、對立事件的概率公式求解.
解:從袋中任取一球,記事件“摸到紅球”、“摸到黑球”、“摸到黃球”、“摸到綠球”為A、B、C、D,則有P(B∪C)=P(B)+P(C)=;P(C∪D)=P(C)+P(D)=;P(B∪C∪D)=1-P(A)=1-=,解的P(B)=,P(C)=,P(D)=
答:得到黑球、
7、得到黃球、得到綠球的概率分別是、、.
4、課堂小結(jié):概率的基本性質(zhì):1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);3)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生,而對立事件是指事件A 與事件B有且僅有一個(gè)發(fā)生,其包括兩
8、種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
5、自我評價(jià)與課堂練習(xí):
1.從一堆產(chǎn)品(其中正品與次品都多于2件)中任取2件,觀察正品件數(shù)與次品件數(shù),判斷下列每件事件是不是互斥事件,如果是,再判斷它們是不是對立事件。
(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
2.拋擲一粒骰子,觀察擲出的點(diǎn)數(shù),設(shè)事件A為出現(xiàn)奇數(shù),事件B為出現(xiàn)2點(diǎn),已知P(A)=,P(B)=,求出現(xiàn)奇數(shù)點(diǎn)或2點(diǎn)的概率之和。
3.某射手在一次射擊訓(xùn)練中,射中10環(huán)、
9、8環(huán)、7環(huán)的概率分別為0.21,0.23,0.25,0.28,計(jì)算該射手在一次射擊中:
(1)射中10環(huán)或9環(huán)的概率;
(2)少于7環(huán)的概率。
4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知從中取出2粒都是黑子的概率是,從中取出2粒都是白子的概率是,現(xiàn)從中任意取出2粒恰好是同一色的概率是多少?
6、評價(jià)標(biāo)準(zhǔn):
1.解:依據(jù)互斥事件的定義,即事件A與事件B在一定試驗(yàn)中不會(huì)同時(shí)發(fā)生知:(1)恰好有1件次品和恰好有2件次品不可能同時(shí)發(fā)生,因此它們是互斥事件,又因?yàn)樗鼈兊牟⒉皇潜厝皇录?,所以它們不是對立事件,同理可以判斷:?)中的2個(gè)事件不是互斥事件,也不是對立事件。(
10、3)中的2個(gè)事件既是互斥事件也是對立事件。
2.解:“出現(xiàn)奇數(shù)點(diǎn)”的概率是事件A,“出現(xiàn)2點(diǎn)”的概率是事件B,“出現(xiàn)奇數(shù)點(diǎn)或2點(diǎn)”的概率之和為P(C)=P(A)+P(B)=+=
3.解:(1)該射手射中10環(huán)與射中9環(huán)的概率是射中10環(huán)的概率與射中9環(huán)的概率的和,即為0.21+0.23=0.44。(2)射中不少于7環(huán)的概率恰為射中10環(huán)、9環(huán)、8環(huán)、7環(huán)的概率的和,即為0.21+0.23+0.25+0.28=0.97,而射中少于7環(huán)的事件與射中不少于7環(huán)的事件為對立事件,所以射中少于7環(huán)的概率為1-0.97=0.03。
4.解:從盒子中任意取出2粒恰好是同一色的概率恰為取2粒白子的概率與2粒黑子的概率的和,即為+=
7、作業(yè):根據(jù)情況安排