仿生機械手結(jié)構(gòu)設(shè)計與功能仿真【三維PROE建?!俊竞?3張CAD圖紙】
喜歡就充值下載吧,,資源目錄下展示的全都有,,下載后全都有,dwg格式的為CAD圖紙,有疑問咨詢QQ:414951605 或1304139763
畢業(yè)實習報告
實習生姓名
班 級
機制5班
聯(lián)系電話
指導教師姓名
職 稱
聯(lián)系電話
實習單位(地點)
實習起止時間
2011 年 3 月 18日始, 2011 年 4 月 01 日止,共 2 周 14 (天)
1.仿生機械手簡介
1.1仿生機械的概述
仿生學是近期發(fā)展起來的一門新興學科,仿生學的的發(fā)展促進了與之密切相關(guān)的的仿生機械學的誕生和發(fā)展。機器人機構(gòu)在仿生機械領(lǐng)域中發(fā)展最快,也是應用最廣泛的仿生機構(gòu)。模仿各類動物的行走﹑爬行的動作,為移動機器人的設(shè)計與構(gòu)思提供了美好的前景。在這里主要介紹生物運動機理與仿生機構(gòu)的設(shè)計構(gòu)思,為開展仿生機構(gòu)的研究提供入門知識。
在仿生機械中,仿生機構(gòu)作為仿生機械的重要組成部分,是模仿生物的運動形態(tài)﹑生理結(jié)構(gòu)和控制原理設(shè)計制造出的功能更集中效率更高﹑應用更加廣泛并具有生物特征的機構(gòu),是仿生機械中完成機械運動的物質(zhì)載體。
模仿生物的形態(tài)、結(jié)構(gòu)和控制原理設(shè)計制造出的功能更集中、效率更高并具有生物特征的機械。研究仿生機械的學科稱為仿生機械學,它是20世紀60年代末期由生物學、生物力學、醫(yī)學、機械工程、控制論和電子技術(shù)等學科相互滲透、結(jié)合而形成的一門邊緣學科。在自然界中,生物通過物競天擇和長期的自身進化,已對自然環(huán)境具有高度的適應性。它們的感知、決策、指令、反饋、運動等機能和器官結(jié)構(gòu)遠比人類所曾經(jīng)制造的機械更為完善。
模仿生物形態(tài)結(jié)構(gòu)創(chuàng)造機械的技術(shù)有悠久的歷史。15世紀意大利的列奧納多.達芬奇認為人類可以模仿鳥類飛行,并繪制了撲翼機圖。到19世紀,各種自然科學有了較大的發(fā)展,人們利用空氣動力學原理,制成了幾種不同類型的單翼機和雙翼滑翔機。1903年,美國的W.萊特和O.萊特發(fā)明了飛機。然而,在很長一段時間內(nèi),人們對于生物與機器之間到底有什么共同之處還缺乏認識,因而只限于形體上的模仿。直到20世紀中葉,由于原子能利用、航天、海洋開發(fā)和軍事技術(shù)的需要,迫切要求機械裝置應具有適應性和高度的可靠性。而以往的各種機械裝置遠遠不能滿足要求,迫切需要尋找一條全新的技術(shù)發(fā)展途徑和設(shè)計理論。隨著近代生物學的發(fā)展,人們發(fā)現(xiàn),生物在能量轉(zhuǎn)換、控制調(diào)節(jié)、信息處理、辨別方位、導航和探測等方面有著以往技術(shù)所不可比擬的長處。同時在自然科學中又出現(xiàn)了“控制論”理論。它是研究機器和生物體中控制和通信的科學??刂普撌菧贤夹g(shù)系統(tǒng)和生物系統(tǒng)工作原理之間的橋梁,它奠定了機器與生物可以類比的理論基礎(chǔ)。1960年 9月在美國召開了第一屆仿生學討論會,并提出了“生物原型是新技術(shù)的關(guān)鍵”的論題,從而確立了仿生學學科,以后又形成許多仿生學的分支學科。1960年由美國機械工程學會主辦,召開了生物力學學術(shù)討論會。1970年日本人工手研究會主辦召開了第一屆生物機構(gòu)討論會,從而確立了生物力學和生物機構(gòu)學兩個學科,在這個基礎(chǔ)上形成了仿生機械學。
仿生機械研究的主要領(lǐng)域有生物力學、控制體和機器人。生物力學研究生命的力學現(xiàn)象和規(guī)律,包括生體材料力學和生體流體力學,生體機械力學和生體流體力學??刂企w和機器人是根據(jù)從生物了解到的知識建造的工程技術(shù)系統(tǒng)。其中用人腦控制的稱為控制體(如肌電假手、裝具);用計算機控制的稱為機器人。仿生機械學的主要研究課題有擬人型機械手、步行機、假肢以及模仿鳥類、昆蟲和魚類等生物的各種機械。
1.2課題的研究目的和意義
自從1960年第一臺機器人問世以來,機器人技術(shù)有了迅猛的發(fā)展,在國防、科研、生產(chǎn)等領(lǐng)域都有了廣泛的應用,代替人們從事一些復雜的、危險的、或者非人可達的工作,從而減輕了人們的勞動強度,提高了效率,擴大了人類活動的空間。但是就目前國內(nèi)外的工業(yè)機器人而一言,大都是針對專門的任務(wù)而設(shè)計的,使用的也是夾鉗式或平行移動式的單自由度末端執(zhí)行器。這種末端執(zhí)行器的結(jié)構(gòu)簡單,控制方便,對于實現(xiàn)負荷的大范圍運動作業(yè)十分有效,但卻存在以下幾個方面的缺點:
1.它對物體的夾持和定位是通過施加較大的壓力所產(chǎn)生的摩擦力來實現(xiàn)的,不存在抓取的幾何封閉和力封閉,因此難于達到很高的抓取精度,穩(wěn)定性和可靠性差。
2.它限制了機器人系統(tǒng)的精細作業(yè)水平。傳統(tǒng)的機器人通過臂調(diào)整末端位置,通過手腕調(diào)整末端姿態(tài)。由于臂的尺寸較大,因此通過整個臂部的運動很難實現(xiàn)物體的精確位姿調(diào)整和操作,且動態(tài)響應較差。
3.它缺少精確的力控制,只能完成夾持力要求不高的作業(yè)。
4.不能適應物體外形的變化。
多指靈巧手的研制有助于解決上述問題。因為作為末端執(zhí)行器的靈巧手相當于安裝在機器人臂上的可獨立實現(xiàn)精細操作運動的一組機器人,通過機器人臂實現(xiàn)粗定位,利用靈巧手實現(xiàn)精確定位。若采用適當?shù)淖ト》绞胶妥ト∫?guī)劃算法,從理論上可以抓取任意形狀的物體并且對物體施加任意的運動和力。這對提高機器人智能化作業(yè)水平有著重要的意義。本課題通過對靈巧手手指結(jié)構(gòu)的優(yōu)化設(shè)計及對控制系統(tǒng)的研究,想解決以下幾個問題:
(1)能適應被操作對象外形的變化、盡可能抓取不同形狀的物體;
(2)能控制操作力,以便對不同材質(zhì)的對象進行操作;
(3)能對被抓物體進行微小的位姿調(diào)整;
(4)通過上位機控制完成抓取運動規(guī)劃,能夠使靈巧手平穩(wěn)的運動并能實
現(xiàn)對物體的穩(wěn)定抓取。
1.3國內(nèi)外該領(lǐng)域的研究現(xiàn)狀
1962年美國就有一種類似多指靈巧手的手爪制造出來。但是真正的靈巧手是1974年日本的okada手[1],如圖1.1所示。
該手具有三個手指,有一個手掌,拇指有三個自由度,另兩個手指各有四個自由度。各自由度都是由電機驅(qū)動,并由鋼絲和滑輪完成運動和動力的傳遞,屬于n驅(qū)動方式。該手的抓取重量為0.8Kg,自重0.24Kg。這種手的靈巧性比較好,但由于拇指只有三個自由度,還不是最靈巧的手。此外,在結(jié)構(gòu)上,各個手指細長而單薄,難以實現(xiàn)較大的抓取力和操作力。
德國宇航中心研制的DLR手被公認為迄今為止世界上最復雜、智能化和集成化最高的仿人機器人多指靈巧手[2]。如圖1.2所示,該手是一種仿人手,它是由四個完全相同手指組成,每個手指有四個關(guān)節(jié)。整個手共由1000個機械零件以及1500個電子元件和112個傳感器組成。其中,末端的兩個關(guān)節(jié)同人手類似,存在著機械禍合,使用一個驅(qū)動器進行驅(qū)動?;P(guān)節(jié)使用兩個驅(qū)動器,實現(xiàn)兩個方向的運動。DLR手采用電驅(qū)動方式,使用微型直線驅(qū)動器作為驅(qū)動元件,n+1驅(qū)動方式。該直線驅(qū)動器將旋轉(zhuǎn)電機、旋轉(zhuǎn)直線轉(zhuǎn)換結(jié)構(gòu)和減速機構(gòu)融為一體。所以它可將所有的驅(qū)動器集成在手指或手掌中,減小了手指的尺寸,同時使腿的傳動距離縮短,提高了動態(tài)響應。DLR手在每個手指上集成有28個傳感器,包括類似人工皮膚的觸覺傳感器、關(guān)節(jié)力矩傳感器、位置傳感器、速度傳感器和溫度傳感器等。
圖1.2DLR多指靈巧手指
具代表性的多指靈巧手是1985年美國麻省理工學院和猶他大學聯(lián)合研制的Utah/M工T靈巧手[3],這是一種仿人手,其大小、形狀、功能都與人手相似。Utah/MIT手采用了模塊化的結(jié)構(gòu)設(shè)計,四個手指(拇指、食指、中指和無名指)完全相同,每個手指有四個自由度,各手指都連接到手掌并且相對于手掌運動。手指的每個關(guān)節(jié)都由腿(繩索)、滑輪進行遠距離帶動,屬于2n驅(qū)動方式,驅(qū)動元件采用的是一排氣動伺服缸,能在指尖上產(chǎn)生31N的抓取力。16個位置傳感器裝在每個關(guān)節(jié)上,32個腿拉緊傳感器裝在腕后面。目前該手多用于實驗室的各種研究,它的主要問題是關(guān)節(jié)自由度太多,控制太復雜,難以實現(xiàn)實時的在線控制,還未得到實際應用。
美國斯坦福大學研制的Stanford/JPL手(Salisbry手)[4]也是一種非常具有代表性的非仿人多指靈巧手。該手沒有手掌,共三個手指,每指三個關(guān)節(jié),拇指相對另兩指布置。每個手指由四個直流力矩電機驅(qū)動,通過四條繩索張力的調(diào)節(jié)來控制三個關(guān)節(jié)力矩的大小,屬于n+1驅(qū)動。關(guān)節(jié)1、2有士90’的運動范圍,末端關(guān)節(jié)3有士135’的運動范圍。這種手每個手指的自由度只有三個,在抓取物體時,抓取點(指尖位置)一旦確定后,其抓取姿態(tài)就唯一確定。因此,實際上手指沒有冗余關(guān)節(jié),也就沒有抓取的柔性,無法像人手一樣進行靈巧、穩(wěn)定的抓取和操作。
此外,根據(jù)欠驅(qū)動原理研制的三指10個自由度的機器人手爪具有驅(qū)動元件數(shù)量少、抓取物體范圍廣泛等優(yōu)點,在欠驅(qū)動手爪的4個主要機構(gòu)中,欠驅(qū)動手指對抓取物體具有被動柔順和形狀自適應的特性,首先對三關(guān)節(jié)欠驅(qū)動手指機構(gòu)進行靜力學分析,提出合理的設(shè)計目標和約束條件;然后根據(jù)設(shè)計目標,采用遺傳算法得到手指機構(gòu)的各個關(guān)節(jié)連桿尺寸和抓取物體時的特殊構(gòu)形,使得在抓取給定物體時各關(guān)節(jié)指面的接觸力達到均勻分布,得到高效的力傳遞和更加緊湊的機構(gòu)尺寸。加拿大MD ROBOTICS公司和Laval大學合作研制出SARAH手爪 (Self-AdaptingRobotic Auxiliary Hand) [5]如圖1.3所示,該手爪共有10個自由度,只用兩個電機驅(qū)動,一個電機負責三個手指的開合;另一個負責調(diào)整手指方向,使其能采取不同的抓取姿勢抓取物體。SARAH手爪既可以用末關(guān)節(jié)指面捏取的方式完成各種精確捏取,如圖1.4所示,又可以用欠驅(qū)動的方式完成包絡(luò)抓取,如圖1.5所示。
圖1.3 欠驅(qū)動10-DOF SARAH手爪
圖1.4欠驅(qū)動10-DOF SARAH手爪用末關(guān)節(jié)指面捏取
圖1.5欠驅(qū)動10-DOF SARAH手爪用欠驅(qū)動的方式完成包絡(luò)抓取
在國內(nèi),對靈巧手的研究是從20世紀80年代后期開始的,其中以北京航空航天大學研制的BH系列為代表,從1987年以來,北航已先后研制出BH一1、BH一2、BH一3型多指靈巧手,該型手是一種仿Stanford/JPL手,三指九自由度,每個手指由四個電機驅(qū)動,屬于n+1驅(qū)動方式。近幾年,北航開始研究BH一4型靈巧手,該手為四指十六自由度,采用模塊化設(shè)計,分為手指、手掌和機械接口三個模塊,改變手掌設(shè)計一可以獲得擬人或非擬人手,機械接口用于確定手與臂的連接,改變機械接口可以使靈巧手適應不同的機械臂。傳動元件全部由齒輪副組成,電機完全置于手指中。傳動路線短,結(jié)構(gòu)簡單、緊湊。
但是由于國內(nèi)對機械手研究的滯后等原因,我國目前已經(jīng)制造出來的這些多指靈巧手在結(jié)構(gòu)方面都存在許多不完善的地方。因此,有必要對多指靈巧手結(jié)構(gòu)進行深入的分析,并引進合理的優(yōu)化設(shè)計方法,設(shè)計出結(jié)構(gòu)更為合理的多指靈巧手,為多指靈巧手的實用化和其他方面的研究提供最理想的結(jié)構(gòu)。
1.4關(guān)節(jié)運動的驅(qū)動方式
機器人關(guān)節(jié)運動的驅(qū)動方式有直接驅(qū)動方式和間接驅(qū)動方式兩種。直接驅(qū)動方式是驅(qū)動器的輸出軸和機器人的關(guān)節(jié)軸直接相連,間接驅(qū)動方式是把驅(qū)動器的力通過減速器或鋼絲繩、皮帶、平行連桿等傳遞給關(guān)節(jié)。
直接驅(qū)動方式的驅(qū)動器和關(guān)節(jié)之間的機械系統(tǒng)較少,因而能夠減少摩擦等非線性因素的影響,控制性能比較好。然而,在另一方面為了直接驅(qū)動關(guān)節(jié),驅(qū)動器的輸出力矩必須很大,除此之外,對于本設(shè)計,要求手指結(jié)構(gòu)要小巧的因素顯然決定了不能采取這種驅(qū)動方式。間接驅(qū)動方式也正是大部分機器人所采取的驅(qū)動方式,這種間接,驅(qū)動驅(qū)動器的輸出力矩一般遠遠小于驅(qū)動關(guān)節(jié)所需的力矩,因此,通常使用減速器。對于手臂的懸臂梁結(jié)構(gòu),如果驅(qū)動器的安裝位置不當,將會使手臂根部關(guān)節(jié)驅(qū)動器的負荷增大,對子手指結(jié)構(gòu)同樣也存在這個問題。對此通常采用的間接驅(qū)動機構(gòu),常見的有以下幾種:
1.4.1繩索滑輪驅(qū)傳動方式
繩索滑輪驅(qū)傳動方式是常用的靈巧手驅(qū)傳動方式。這種傳動方式是比較有利的,它可以很方便地實現(xiàn)運動和動力的遠距離傳送,也能較好的滿足靈巧手結(jié)構(gòu)上的要求,并且質(zhì)量輕、 慣性負載低、 摩擦較小、 經(jīng)濟實用、 耐用性強,傳動結(jié)構(gòu)示意圖如圖1.6所示。末端桿有兩個電機,分別驅(qū)動末端桿的正轉(zhuǎn)與反轉(zhuǎn),以實現(xiàn)手指的夾持和松開。
圖1.6繩索滑輪驅(qū)傳動方式
但此種傳動方式具有力和運動傳遞的剛性不足的固有特點,并由此引起各種缺陷:
(1) 繩索有張力,容易變形,會引起傳動的滯后現(xiàn)象,使用時間長了,繩索會變松弛,將會帶來較大的運動傳遞誤差。
(2) 繩索在工作前還需要預緊,通常預緊力比較大,但又不能過大,張力過大可能會使繩索拉斷,不利于大負載條件下的抓取工作。
(3) 雖然繩索與滑輪或套筒的摩擦可以比較小,但采用這種方式需要正確布置繩索的走向,否則會產(chǎn)生很大的附加力和附加力矩。當產(chǎn)生這種附加力矩時,會使運動出現(xiàn)耦合,增加控制的難度。這種摩擦具有嚴重的非線性和強耦合性,給控制帶來了很大的困難。
(4)繩索只能受拉,不能受壓,所以實現(xiàn)回程將會很困難??刂屏σ坏┏{(diào),消除起來將是一件非常麻煩的事,但超調(diào)又是在實際中不可避免的。要想實現(xiàn)回程,只有在每個關(guān)節(jié)處再加置一個電機,使兩個電機配合工作實現(xiàn)一個關(guān)節(jié)的正反轉(zhuǎn),這樣給手指的安裝和控制都會帶來不便。由上述分析可以看出,用繩索加滑輪這種傳動方式并不理想,不能滿足靈巧手的設(shè)計要求。
1.4.2 鏈條、鋼帶驅(qū)動
鏈條、鋼帶這種方式同樣是把驅(qū)動器和關(guān)節(jié)分開安裝,是遠程驅(qū)動的手段之一,鏈條、鋼帶與鋼絲繩相比,剛性高,可以傳遞較大的輸出,但設(shè)計上的限制也很大,在SCARA型的關(guān)節(jié)機器人中多采用了此法。
1.4.3 閉式鏈連桿傳動機構(gòu)的驅(qū)動方式
對于像靈巧手指這類不是很遠距離的運動和動力傳送,連桿機構(gòu)也是可行的方法。手指機構(gòu)的主體是開環(huán)串聯(lián)三連桿機構(gòu),在此開環(huán)機構(gòu)上添加一些零自由度的桿組,就可以構(gòu)造出閉環(huán)連桿機構(gòu),通過這些桿組可以將手指根部的動力傳送到各個關(guān)節(jié),如圖1.7
圖1.7閉式鏈手指機構(gòu)
桿件1、桿件2和桿件3分別為根關(guān)節(jié)、中關(guān)節(jié)和末關(guān)節(jié),根關(guān)節(jié)固定于掌上。圖 2 中的桿件 1、4、6 被同軸驅(qū)動,電機直接驅(qū)動桿件1、4 和6 ,桿件 4 通過一個四連桿機構(gòu)帶動桿件2的運動。桿件6通過另外一個平面四連桿機構(gòu)驅(qū)動蓮花桿8 ,然后再通過第 3 個四連桿機構(gòu)驅(qū)動手指末關(guān)節(jié)桿 3。其中蓮花8的作用是在為了改善兩個平面四邊形之間的傳遞性能,這樣就實現(xiàn)了手指3個關(guān)節(jié)的獨立驅(qū)動??紤]到一般四連桿機構(gòu)傳動的運動在傳動過程中有較大變化,因此采用輸出等于輸入的平行四邊形機構(gòu)??梢钥闯?桿件3分別由桿件2和桿件9領(lǐng)銜的兩條支鏈直接并聯(lián)驅(qū)動,而這兩條支鏈又都串聯(lián)于桿件1上,所以手指末端的位形將由桿件1 的位形以及桿件1上的兩個平行四邊形機構(gòu)分別所引導的支鏈的位形共同確定。以上的特征說明了這是一種混聯(lián)結(jié)構(gòu),同時具備并聯(lián)結(jié)構(gòu)和串聯(lián)結(jié)構(gòu)的優(yōu)勢,即繼承了并聯(lián)結(jié)構(gòu)的高速、 高剛度,又兼?zhèn)淞舜?lián)結(jié)構(gòu)的高靈活性;就驅(qū)動方式來說是并聯(lián)驅(qū)動,但對整個手指來說是串聯(lián)結(jié)構(gòu)的,具有串聯(lián)結(jié)構(gòu)的特點。
閉式鏈傳動機構(gòu)的特點:
這種傳動結(jié)構(gòu)在常規(guī)驅(qū)動方式下與傳統(tǒng)的繩索滑輪驅(qū)傳動方式相比,有以下一些優(yōu)點:
(1)運動副為低副,接觸面為面接觸,低副兩元素間便于潤滑,桿件幾何構(gòu)形簡單,便于加工制造。
(2)剛性傳遞,變形小,沒有滯后性,通過幾何約束定位,傳動可靠,工作安全。
(3)桿件并聯(lián)驅(qū)動可以承受較大載荷,機械損耗比較小,這是連桿驅(qū)動最突出的優(yōu)點。
(4)桿件即可受拉也可受壓,一個電機就可實現(xiàn)關(guān)節(jié)的正反轉(zhuǎn),回程方便,因此控制力一旦超調(diào),消除起來很簡單。
(5)閉式鏈采用平行四邊形機構(gòu)傳動,平行四邊形機構(gòu)有著輸入等于輸出的特性,因此手指的運動學和各種性能等同于開環(huán)平面 3 自由度連桿機構(gòu),因此運動學求解和性能分析得以簡化。由以上的分析比較可知,所設(shè)計的新型并聯(lián)連桿機構(gòu)傳動方式比傳統(tǒng)的繩索滑輪傳動有較好的優(yōu)勢,特別是針對傳統(tǒng)傳動方式傳遞剛性不足的固有缺陷,此種新型傳動方式具有一定的改善功效。當然,這種傳動方式將會使靈巧手的結(jié)構(gòu)變得復雜些,在結(jié)構(gòu)的具體設(shè)計時需注意。
綜合上述驅(qū)動方式的分析和研究,本文中的機械手采用閉式鏈連桿傳動機構(gòu)的驅(qū)動方式驅(qū)動
1.5本文主要研究內(nèi)容
針對目前多指靈巧手研究中存在的問題,并考慮現(xiàn)有的研究條件,本文著重進行以下研究工作:
1. 多指手結(jié)構(gòu)設(shè)計的研究對多指手的結(jié)構(gòu)型式進行綜合分析,選用合理的優(yōu)化方法對靈巧手結(jié)構(gòu)參數(shù)進行優(yōu)化,從仿人手的角度,以人手結(jié)構(gòu)形式及比例參數(shù)為依據(jù),進行多指靈巧手的具體結(jié)構(gòu)設(shè)計,使其有較好的機械特性,保證力傳遞的精度。并用Pro/e軟件進行了多指靈巧手的三維造型。
2. 多指靈巧手的運動學和靜力學分析對所設(shè)計的三指靈巧手分析并建立了運動學模型,得出正、反向運動學方程,并對抓持狀態(tài)下各手指的運動姿態(tài)進行了仿真。通過靜力學研究計算出在靜平衡狀態(tài)下各關(guān)節(jié)的力矩,為深入研究機械手的控制提供了理論依據(jù)。
3.進行機械手的裝配和仿真。
11
收藏