高一數(shù)學(xué)必修一-教案-2.3-二次函數(shù)與一元二次方程、不等式

上傳人:txadgkn****dgknqu... 文檔編號:60437487 上傳時間:2022-03-07 格式:DOCX 頁數(shù):15 大?。?47.36KB
收藏 版權(quán)申訴 舉報 下載
高一數(shù)學(xué)必修一-教案-2.3-二次函數(shù)與一元二次方程、不等式_第1頁
第1頁 / 共15頁
高一數(shù)學(xué)必修一-教案-2.3-二次函數(shù)與一元二次方程、不等式_第2頁
第2頁 / 共15頁
高一數(shù)學(xué)必修一-教案-2.3-二次函數(shù)與一元二次方程、不等式_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高一數(shù)學(xué)必修一-教案-2.3-二次函數(shù)與一元二次方程、不等式》由會員分享,可在線閱讀,更多相關(guān)《高一數(shù)學(xué)必修一-教案-2.3-二次函數(shù)與一元二次方程、不等式(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、精選優(yōu)質(zhì)文檔-----傾情為你奉上 2.3 二次函數(shù)與一元二次方程、不等式 第1課時 二次函數(shù)與一元二次方程、不等式 學(xué)習(xí)目標(biāo) 1.從函數(shù)觀點看一元二次方程.了解函數(shù)的零點與方程根的關(guān)系.2.從函數(shù)觀點看一元二次不等式.經(jīng)歷從實際情景中抽象出一元二次不等式的過程,了解一元二次不等式的現(xiàn)實意義.3.借助一元二次函數(shù)的圖象,了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系. 知識點一 一元二次不等式的概念 定義 只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式,叫做一元二次不等式 一般形式 ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其

2、中a≠0,a,b,c均為常數(shù) 知識點二 一元二次函數(shù)的零點 一般地,對于二次函數(shù)y=ax2+bx+c,我們把使ax2+bx+c=0的實數(shù)x叫做二次函數(shù)y=ax2+bx+c的零點. 知識點三 二次函數(shù)與一元二次方程的根、一元二次不等式的解集的對應(yīng)關(guān)系 判別式Δ=b2-4ac Δ>0 Δ=0 Δ<0 二次函數(shù)y=ax2+bx+c(a>0)的圖象 一元二次方程ax2+bx+c=0(a>0)的根 有兩個不相等的實數(shù)根x1,x2(x10(a>0)的解集 {x|xx2}

3、 R ax2+bx+c<0(a>0)的解集 {x|x10;③ax2+4x-7>0;④x2<0.其中一定為一元二次不等式的有________.(填序號) 答案 ②④ 解析 一定是一元二次不等式的為②④. 2.不等式x(2-x)>0的解集為________. 答案 {x|0

4、,即-0; (2)3x2+5x-2≥0; (3)x2-4x+5>0. 解 (1)不等式可化為x2-5x+6<0. 因為Δ=(-5)2-4×1×6=1>0,所以方程x2-5x+6=0有兩個實數(shù)根:x1=2,x2=3. 由二次函數(shù)y=x2-5x+6的圖象(如圖①),得原不等式的解集為{x|2

5、)=49>0, 所以方程3x2+5x-2=0的兩實根為x1=-2,x2=. 由二次函數(shù)y=3x2+5x-2的圖象(圖②),得原不等式的解集為. (3)方程x2-4x+5=0無實數(shù)解,函數(shù)y=x2-4x+5的圖象是開口向上的拋物線,與x軸無交點(如圖③).觀察圖象可得,不等式的解集為R. 反思感悟 解一元二次不等式的一般步驟 第一步:把一元二次不等式化為標(biāo)準(zhǔn)形式(二次項系數(shù)為正,右邊為0的形式);第二步:求Δ=b2-4ac;第三步:若Δ<0,根據(jù)二次函數(shù)圖象直接寫出解集;若Δ≥0,求出對應(yīng)方程的根寫出解集. 跟蹤訓(xùn)練1 解下列不等式: (1)4x2-4x+1>0; (2)-x

6、2+6x-10>0. 解 (1)∵方程4x2-4x+1=0有兩個相等的實根x1=x2=.作出函數(shù)y=4x2-4x+1的圖象如圖.由圖可得原不等式的解集為. (2)原不等式可化為x2-6x+10<0, ∵Δ=36-40=-4<0, ∴方程x2-6x+10=0無實根, ∴原不等式的解集為?. 二、三個“二次”間的關(guān)系及應(yīng)用 例2 已知二次函數(shù)y=ax2+(b-8)x-a-ab,且y>0的解集為{x|-30的解集為{x|-3

7、-3,2是方程ax2+(b-8)x-a-ab=0的兩根, 所以解得 所以y=-3x2-3x+18. (2)因為a=-3<0,所以二次函數(shù)y=-3x2+5x+c的圖象開口向下,要使-3x2+5x+c≤0的解集為R,只需Δ≤0,即25+12c≤0,所以c≤-. 所以當(dāng)c≤-時,-3x2+5x+c≤0的解集為R. 反思感悟 三個“二次”之間的關(guān)系 (1)三個“二次”中,二次函數(shù)是主體,討論二次函數(shù)主要是將問題轉(zhuǎn)化為一元二次方程和一元二次不等式的形式來研究. (2)討論一元二次方程和一元二次不等式又要將其與相應(yīng)的二次函數(shù)相聯(lián)系,通過二次函數(shù)的圖象及性質(zhì)來解決問題,關(guān)系如下: 特別提

8、醒:由于忽視二次項系數(shù)的符號和不等號的開口易寫錯不等式的解集形式. 跟蹤訓(xùn)練2 已知關(guān)于x的不等式ax2+5x+c>0的解集為. (1)求a,c的值; (2)解關(guān)于x的不等式ax2+(ac+2)x+2c≥0. 解 (1)由題意知,不等式對應(yīng)的方程ax2+5x+c=0的兩個實數(shù)根為和, 由根與系數(shù)的關(guān)系,得 解得a=-6,c=-1. (2)由a=-6,c=-1知不等式ax2+(ac+2)x+2c≥0可化為-6x2+8x-2≥0,即3x2-4x+1≤0,解得≤x≤1,所以不等式的解集為. 三、含參數(shù)的一元二次不等式的解法 例3 設(shè)a∈R,解關(guān)于x的不等式ax2+(1-2a)x-2

9、>0. 解 (1)當(dāng)a=0時,不等式可化為x-2>0,解得x>2,即原不等式的解集為{x|x>2}. (2)當(dāng)a≠0時,方程ax2+(1-2a)x-2=0的兩根分別為2和-. ①當(dāng)a<-時,解不等式得-0時, 解不等式得x<-或x>2, 即原不等式的解集為. 反思感悟 解含參數(shù)的一元二次不等式的步驟 特別提醒:對應(yīng)方程的根優(yōu)先考慮用因式分解確定,分解不開時再求判別式Δ,用求根公式計算. 跟蹤訓(xùn)練3 (1)當(dāng)

10、a=時,求關(guān)于x的不等式x2-x+1≤0的解集; (2)若a>0,求關(guān)于x的不等式x2-x+1≤0的解集. 解 (1)當(dāng)a=時,有x2-x+1≤0,即2x2-5x+2≤0,解得≤x≤2, 故不等式的解集為. (2)x2-x+1≤0?(x-a)≤0, ①當(dāng)01時,a>,不等式的解集為. 綜上,當(dāng)01時,不等式的解集為. 1.不等式9x2+6x+1≤0的解集是(  ) A. B. C.? D. 答

11、案 D 解析 原不等式可化為(3x+1)2≤0, ∴3x+1=0,∴x=-. 2.如果關(guān)于x的不等式x20的解集是(  ) A.{x|x≥2或x≤0} B.{x|x>2或x<0} C.{x|0≤x≤2} D.{x|0

12、2x>0,即x(x-2)>0, 得x>2或x<0,故選B. 4.不等式x2-3x-10<0的解集是________. 答案 {x|-2

13、法 (1)圖象法: ①化不等式為標(biāo)準(zhǔn)形式:ax2+bx+c>0(a>0)或ax2+bx+c<0(a>0); ②求方程ax2+bx+c=0(a>0)的根,并畫出對應(yīng)函數(shù)y=ax2+bx+c圖象的簡圖; ③由圖象得出不等式的解集. (2)代數(shù)法:將所給不等式化為一般式后借助分解因式或配方求解. 2.方法歸納:數(shù)形結(jié)合,分類討論. 3.常見誤區(qū):當(dāng)二次項系數(shù)小于0時,需兩邊同乘-1,化為正的. 1.(2019·全國Ⅰ)已知集合M={x|-4

14、21>m, 故原不等式的解集為,故選D. 3.二次方程ax2+bx+c=0的兩根為-2,3,如果a<0,那么ax2+bx+c>0的解集為(  ) A.{x|x>3或x<-2} B.{x|x>2或x<-3} C.{x|-2

15、+3=-,-2×3=, ∴b=-a,c=-6a, ∴不等式ax2+bx+c>0可化為ax2-ax-6a>0, 又a<0,∴x2-x-6<0,∴(x-3)(x+2)<0, ∴-2

16、≥2} B.{m|-2≤m≤2} C.{m|m<-2或m>2} D.{m|-20,若此不等式的解集為,則m

17、的取值范圍是________. 答案 {m|m<0} 解析 ∵不等式(mx-1)(x-2)>0的解集為, ∴方程(mx-1)(x-2)=0的兩個實數(shù)根為和2, 且解得m<0,∴m的取值范圍是m<0. 9.已知不等式x2-2x-3<0的解集為A,不等式x2+x-6<0的解集為B. (1)求A∩B; (2)若不等式x2+ax+b<0的解集為A∩B,求不等式ax2+x+b<0的解集. 解 (1)由x2-2x-3<0,得-1

18、得解得 ∴-x2+x-2<0,∴x2-x+2>0, ∵Δ=1-8=-7<0, ∴不等式x2-x+2>0的解集為R. 10.若不等式(1-a)x2-4x+6>0的解集是{x|-30; (2)b為何值時,ax2+bx+3≥0的解集為R? 解 (1)由題意知1-a<0,且-3和1是方程(1-a)x2-4x+6=0的兩根, ∴解得a=3. ∴不等式2x2+(2-a)x-a>0,即為2x2-x-3>0, 解得x<-1或x>. ∴所求不等式的解集為. (2)ax2+bx+3≥0,即為3x2+bx+3≥0, 若此不等式解集為R,

19、 則Δ=b2-4×3×3≤0,∴-6≤b≤6. 11.下列四個不等式: ①-x2+x+1≥0;②x2-2x+>0;③x2+6x+10>0;④2x2-3x+4<1. 其中解集為R的是(  ) A.① B.② C.③ D.④ 答案 C 解析?、亠@然不可能; ②中Δ=(-2)2-4×>0,解集不為R; ③中Δ=62-4×10<0.滿足條件; ④中不等式可化為2x2-3x+3<0,所對應(yīng)的二次函數(shù)開口向上,顯然不可能.故選C. 12.在R上定義運算“⊙”:a⊙b=ab+2a+b,則滿足x⊙(x-2)<0的實數(shù)x的取值范圍為(  ) A.{x|0

20、|-21} D.{x|-1

21、值范圍是2≤a<3. 14.已知不等式x2-2x+5≥a2-3a對?x∈R恒成立,則a的取值范圍為________. 答案 {a|-1≤a≤4} 解析 x2-2x+5=(x-1)2+4≥a2-3a恒成立, ∴a2-3a≤4,即a2-3a-4≤0, ∴(a-4)(a+1)≤0,∴-1≤a≤4. 15.在R上定義運算:=ad-bc.若不等式≥1對任意實數(shù)x恒成立,則實數(shù)a的最大值為________. 答案  解析 原不等式等價于x(x-1)-(a-2)(a+1)≥1, 即x2-x-1≥(a+1)(a-2)對任意x恒成立, 因為x2-x-1=2-≥-, 所以-≥a2-a-2

22、,解得-≤a≤. 16.已知不等式ax2+2ax+1≥0對任意x∈R恒成立,解關(guān)于x的不等式x2-x-a2+a<0. 解 ∵ax2+2ax+1≥0對任意x∈R恒成立. 當(dāng)a=0時,1≥0,不等式恒成立; 當(dāng)a≠0時,則解得0a,即0≤a<時,a

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!