2019年高考試題真題1數(shù)學(xué)理(新課標(biāo)Ⅱ卷)解析版[高考復(fù)習(xí)]
-
資源ID:10888222
資源大?。?span id="hi0a95g" class="font-tahoma">1.48MB
全文頁數(shù):23頁
- 資源格式: DOC
下載積分:5積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。
|
2019年高考試題真題1數(shù)學(xué)理(新課標(biāo)Ⅱ卷)解析版[高考復(fù)習(xí)]
絕密★啟用前
2019年普通高等學(xué)校招生全國(guó)統(tǒng)一考試
理科數(shù)學(xué)
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。
2.作答時(shí),務(wù)必將答案寫在答題卡上。寫在本試卷及草稿紙上無效。
3.考試結(jié)束后,將本試卷和答題卡一并交回。
一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1.設(shè)集合A={x|x2-5x+6>0},B={ x|x-1<0},則A∩B=
A. (-∞,1) B. (-2,1)
C. (-3,-1) D. (3,+∞)
【答案】A
【解析】
【分析】
先求出集合A,再求出交集.
【詳解】由題意得,,則.故選A.
【點(diǎn)睛】本題考點(diǎn)為集合的運(yùn)算,為基礎(chǔ)題目.
2.設(shè)z=-3+2i,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于
A. 第一象限 B. 第二象限
C. 第三象限 D. 第四象限
【答案】C
【解析】
分析】
先求出共軛復(fù)數(shù)再判斷結(jié)果.
【詳解】由得則對(duì)應(yīng)點(diǎn)(-3,-2)位于第三象限.故選C.
【點(diǎn)睛】本題考點(diǎn)為共軛復(fù)數(shù),為基礎(chǔ)題目.
3.已知=(2,3),=(3,t),=1,則=
A. -3 B. -2
C. 2 D. 3
【答案】C
【解析】
【分析】
根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.
【詳解】由,,得,則,.故選C.
【點(diǎn)睛】本題考點(diǎn)為平面向量的數(shù)量積,側(cè)重基礎(chǔ)知識(shí)和基本技能,難度不大.
4.2019年1月3日嫦娥四號(hào)探測(cè)器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國(guó)航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個(gè)關(guān)鍵技術(shù)問題是地面與探測(cè)器的通訊聯(lián)系.為解決這個(gè)問題,發(fā)射了嫦娥四號(hào)中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.點(diǎn)是平衡點(diǎn),位于地月連線的延長(zhǎng)線上.設(shè)地球質(zhì)量為M1,月球質(zhì)量為M2,地月距離為R,點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動(dòng)定律和萬有引力定律,r滿足方程:
.
設(shè),由于的值很小,因此在近似計(jì)算中,則r的近似值為
A. B.
C. D.
【答案】D
【解析】
【分析】
本題在正確理解題意的基礎(chǔ)上,將有關(guān)式子代入給定公式,建立的方程,解方程、近似計(jì)算.題目所處位置應(yīng)是“解答題”,但由于題干較長(zhǎng),易使考生“望而生畏”,注重了閱讀理解、數(shù)學(xué)式子的變形及運(yùn)算求解能力的考查.
【詳解】由,得
因?yàn)椋?
所以,
即,
解得,
所以
【點(diǎn)睛】由于本題題干較長(zhǎng),所以,易錯(cuò)點(diǎn)之一就是能否靜心讀題,正確理解題意;易錯(cuò)點(diǎn)之二是復(fù)雜式子的變形出錯(cuò).
5.演講比賽共有9位評(píng)委分別給出某選手的原始評(píng)分,評(píng)定該選手的成績(jī)時(shí),從9個(gè)原始評(píng)分中去掉1個(gè)最高分、1個(gè)最低分,得到7個(gè)有效評(píng)分.7個(gè)有效評(píng)分與9個(gè)原始評(píng)分相比,不變的數(shù)字特征是
A. 中位數(shù) B. 平均數(shù)
C. 方差 D. 極差
【答案】A
【解析】
【分析】
可不用動(dòng)筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.
【詳解】設(shè)9位評(píng)委評(píng)分按從小到大排列為.
則①原始中位數(shù)為,去掉最低分,最高分,后剩余,
中位數(shù)仍為,A正確.
②原始平均數(shù),后來平均數(shù)
平均數(shù)受極端值影響較大,與不一定相同,B不正確
③
由②易知,C不正確.
④原極差,后來極差顯然極差變小,D不正確.
【點(diǎn)睛】本題旨在考查學(xué)生對(duì)中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.
6.若a>b,則
A. ln(a?b)>0 B. 3a<3b
C. a3?b3>0 D. │a│>│b│
【答案】C
【解析】
【分析】
本題也可用直接法,因?yàn)?,所以,?dāng)時(shí),,知A錯(cuò),因?yàn)槭窃龊瘮?shù),所以,故B錯(cuò);因?yàn)閮绾瘮?shù)是增函數(shù),,所以,知C正確;取,滿足,,知D錯(cuò).
【詳解】取,滿足,,知A錯(cuò),排除A;因?yàn)椋狟錯(cuò),排除B;取,滿足,,知D錯(cuò),排除D,因?yàn)閮绾瘮?shù)是增函數(shù),,所以,故選C.
【點(diǎn)睛】本題主要考查對(duì)數(shù)函數(shù)性質(zhì)、指數(shù)函數(shù)性質(zhì)、冪函數(shù)性質(zhì)及絕對(duì)值意義,滲透了邏輯推理和運(yùn)算能力素養(yǎng),利用特殊值排除即可判斷.
7.設(shè)α,β為兩個(gè)平面,則α∥β的充要條件是
A. α內(nèi)有無數(shù)條直線與β平行
B. α內(nèi)有兩條相交直線與β平行
C. α,β平行于同一條直線
D. α,β垂直于同一平面
【答案】B
【解析】
【分析】
本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.
【詳解】由面面平行判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.
【點(diǎn)睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤.
8.若拋物線y2=2px(p>0)的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),則p=
A. 2 B. 3
C. 4 D. 8
【答案】D
【解析】
【分析】
利用拋物線與橢圓有共同的焦點(diǎn)即可列出關(guān)于的方程,即可解出,或者利用檢驗(yàn)排除的方法,如時(shí),拋物線焦點(diǎn)為(1,0),橢圓焦點(diǎn)為(2,0),排除A,同樣可排除B,C,故選D.
【詳解】因?yàn)閽佄锞€的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),所以,解得,故選D.
【點(diǎn)睛】本題主要考查拋物線與橢圓的幾何性質(zhì),滲透邏輯推理、運(yùn)算能力素養(yǎng).
9.下列函數(shù)中,以為周期且在區(qū)間(,)單調(diào)遞增的是
A. f(x)=│cos 2x│ B. f(x)=│sin 2x│
C. f(x)=cos│x│ D. f(x)= sin│x│
【答案】A
【解析】
【分析】
本題主要考查三角函數(shù)圖象與性質(zhì),滲透直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng).畫出各函數(shù)圖象,即可做出選擇.
【詳解】因?yàn)閳D象如下圖,知其不是周期函數(shù),排除D;因?yàn)?,周期為,排除C,作出圖象,由圖象知,其周期為,在區(qū)間單調(diào)遞增,A正確;作出的圖象,由圖象知,其周期為,在區(qū)間單調(diào)遞減,排除B,故選A.
【點(diǎn)睛】利用二級(jí)結(jié)論:①函數(shù)的周期是函數(shù)周期的一半;②不是周期函數(shù);
10.已知a∈(0,),2sin2α=cos2α+1,則sinα=
A. B.
C. D.
【答案】B
【解析】
【分析】
利用二倍角公式得到正余弦關(guān)系,利用角范圍及正余弦平方和為1關(guān)系得出答案.
【詳解】,.
,又,,又,,故選B.
【點(diǎn)睛】本題為三角函數(shù)中二倍角公式、同角三角函數(shù)基本關(guān)系式的考查,中等難度,判斷正余弦正負(fù),運(yùn)算準(zhǔn)確性是關(guān)鍵,題目不難,需細(xì)心,解決三角函數(shù)問題,研究角的范圍后得出三角函數(shù)值的正負(fù),很關(guān)鍵,切記不能憑感覺.
11.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為
A. B.
C. 2 D.
【答案】A
【解析】
【分析】
準(zhǔn)確畫圖,由圖形對(duì)稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率.
【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱性可知軸,
又,為以為直徑的圓的半徑,
為圓心.
,又點(diǎn)在圓上,
,即.
,故選A.
【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時(shí)事半功倍,信手拈來.
12.設(shè)函數(shù)的定義域?yàn)镽,滿足,且當(dāng)時(shí),.若對(duì)任意,都有,則m的取值范圍是
A. B.
C. D.
【答案】B
【解析】
【分析】
本題為選擇壓軸題,考查函數(shù)平移伸縮,恒成立問題,需準(zhǔn)確求出函數(shù)每一段解析式,分析出臨界點(diǎn)位置,精準(zhǔn)運(yùn)算得到解決.
【詳解】時(shí),,,,即右移1個(gè)單位,圖像變?yōu)樵瓉淼?倍.
如圖所示:當(dāng)時(shí),,令,整理得:,(舍),時(shí),成立,即,,故選B.
【點(diǎn)睛】易錯(cuò)警示:圖像解析式求解過程容易求反,畫錯(cuò)示意圖,畫成向左側(cè)擴(kuò)大到2倍,導(dǎo)致題目出錯(cuò),需加深對(duì)抽象函數(shù)表達(dá)式的理解,平時(shí)應(yīng)加強(qiáng)這方面練習(xí),提高抽象概括、數(shù)學(xué)建模能力.
二、填空題:本題共4小題,每小題5分,共20分.
13.我國(guó)高鐵發(fā)展迅速,技術(shù)先進(jìn).經(jīng)統(tǒng)計(jì),在經(jīng)停某站的高鐵列車中,有10個(gè)車次的正點(diǎn)率為0.97,有20個(gè)車次的正點(diǎn)率為0.98,有10個(gè)車次的正點(diǎn)率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點(diǎn)率的估計(jì)值為___________.
【答案】0.98.
【解析】
【分析】
本題考查通過統(tǒng)計(jì)數(shù)據(jù)進(jìn)行概率的估計(jì),采取估算法,利用概率思想解題.
【詳解】由題意得,經(jīng)停該高鐵站的列車正點(diǎn)數(shù)約為,其中高鐵個(gè)數(shù)為10+20+10=40,所以該站所有高鐵平均正點(diǎn)率約為.
【點(diǎn)睛】本題考點(diǎn)為概率統(tǒng)計(jì),滲透了數(shù)據(jù)處理和數(shù)學(xué)運(yùn)算素養(yǎng).側(cè)重統(tǒng)計(jì)數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計(jì)數(shù)據(jù),估算出正點(diǎn)列車數(shù)量與列車總數(shù)的比值.
14.已知是奇函數(shù),且當(dāng)時(shí),.若,則__________.
【答案】-3
【解析】
【分析】
本題主要考查函數(shù)奇偶性,對(duì)數(shù)的計(jì)算.滲透了數(shù)學(xué)運(yùn)算、直觀想象素養(yǎng).使用轉(zhuǎn)化思想得出答案.
【詳解】因?yàn)槭瞧婧瘮?shù),且當(dāng)時(shí),.
又因?yàn)?,?
所以,兩邊取以為底的對(duì)數(shù)得,所以,即.
【點(diǎn)睛】本題主要考查函數(shù)奇偶性,對(duì)數(shù)計(jì)算.
15.的內(nèi)角的對(duì)邊分別為.若,則的面積為__________.
【答案】
【解析】
【分析】
本題首先應(yīng)用余弦定理,建立關(guān)于的方程,應(yīng)用的關(guān)系、三角形面積公式計(jì)算求解,本題屬于常見題目,難度不大,注重了基礎(chǔ)知識(shí)、基本方法、數(shù)學(xué)式子的變形及運(yùn)算求解能力的考查.
【詳解】由余弦定理得,
所以,
即
解得(舍去)
所以,
【點(diǎn)睛】本題涉及正數(shù)開平方運(yùn)算,易錯(cuò)點(diǎn)往往是余弦定理應(yīng)用有誤或是開方導(dǎo)致錯(cuò)誤.解答此類問題,關(guān)鍵是在明確方法的基礎(chǔ)上,準(zhǔn)確記憶公式,細(xì)心計(jì)算.
16.中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________.
【答案】 (1). 共26個(gè)面. (2). 棱長(zhǎng)為.
【解析】
【分析】
第一問可按題目數(shù)出來,第二問需在正方體中簡(jiǎn)單還原出物體位置,利用對(duì)稱性,平面幾何解決.
【詳解】由圖可知第一層與第三層各有9個(gè)面,計(jì)18個(gè)面,第二層共有8個(gè)面,所以該半正多面體共有個(gè)面.
如圖,設(shè)該半正多面體的棱長(zhǎng)為,則,延長(zhǎng)與交于點(diǎn),延長(zhǎng)交正方體棱于,由半正多面體對(duì)稱性可知,為等腰直角三角形,
,
,即該半正多面體棱長(zhǎng)為.
【點(diǎn)睛】本題立意新穎,空間想象能力要求高,物體位置還原是關(guān)鍵,遇到新題別慌亂,題目其實(shí)很簡(jiǎn)單,穩(wěn)中求勝是關(guān)鍵.立體幾何平面化,無論多難都不怕,強(qiáng)大空間想象能力,快速還原圖形.
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答.第22、23為選考題,考生根據(jù)要求作答.
(一)必考題:共60分。
17.
如圖,長(zhǎng)方體ABCD–A1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
【答案】(1)證明見解析;(2)
【解析】
【分析】
(1)利用長(zhǎng)方體的性質(zhì),可以知道側(cè)面,利用線面垂直的性質(zhì)可以證明出,這樣可以利用線面垂直的判定定理,證明出平面;
(2)以點(diǎn)坐標(biāo)原點(diǎn),以分別為軸,建立空間直角坐標(biāo)系,
設(shè)正方形的邊長(zhǎng)為,,求出相應(yīng)點(diǎn)的坐標(biāo),利用,可以求出之間的關(guān)系,分別求出平面、平面的法向量,利用空間向量的數(shù)量積公式求出二面角的余弦值的絕對(duì)值,最后利用同角的三角函數(shù)關(guān)系,求出二面角的正弦值.
【詳解】證明(1)因?yàn)槭情L(zhǎng)方體,所以側(cè)面,而平面,所以
又,,平面,因此平面;
(2)以點(diǎn)坐標(biāo)原點(diǎn),以分別為軸,建立如下圖所示的空間直角坐標(biāo)系,
,
因?yàn)?,所以?
所以,,
設(shè)是平面的法向量,
所以,
設(shè)是平面的法向量,
所以,
二面角的余弦值的絕對(duì)值為,
所以二面角的正弦值為.
【點(diǎn)睛】本題考查了利用線面垂直的性質(zhì)定理證明線線垂直,考查了利用空間向量求二角角的余弦值,以及同角的三角函數(shù)關(guān)系,考查了數(shù)學(xué)運(yùn)算能力.
18.
11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
【答案】(1);(2)0.1
【解析】
【分析】
(1)本題首先可以通過題意推導(dǎo)出所包含的事件為“甲連贏兩球或乙連贏兩球”,然后計(jì)算出每種事件的概率并求和即可得出結(jié)果;
(2)本題首先可以通過題意推導(dǎo)出所包含的事件為“前兩球甲乙各得分,后兩球均為甲得分”,然后計(jì)算出每種事件的概率并求和即可得出結(jié)果。
【詳解】(1)由題意可知,所包含的事件為“甲連贏兩球或乙連贏兩球”
所以
(2)由題意可知,包含的事件為“前兩球甲乙各得分,后兩球均為甲得分”
所以
【點(diǎn)睛】本題考查古典概型的相關(guān)性質(zhì),能否通過題意得出以及所包含的事件是解決本題的關(guān)鍵,考查推理能力,考查學(xué)生從題目中獲取所需信息的能力,是中檔題。
19.
已知數(shù)列{an}和{bn}滿足a1=1,b1=0, ,.
(1)證明:{an+bn}是等比數(shù)列,{an–bn}是等差數(shù)列;
(2)求{an}和{bn}的通項(xiàng)公式.
【答案】(1)見解析;(2),。
【解析】
【分析】
(1)可通過題意中以及對(duì)兩式進(jìn)行相加和相減即可推導(dǎo)出數(shù)列是等比數(shù)列以及數(shù)列是等差數(shù)列;
(2)可通過(1)中的結(jié)果推導(dǎo)出數(shù)列以及數(shù)列的通項(xiàng)公式,然后利用數(shù)列以及數(shù)列的通項(xiàng)公式即可得出結(jié)果。
【詳解】(1)由題意可知,,,,
所以,即,
所以數(shù)列是首項(xiàng)為、公比為的等比數(shù)列,,
因?yàn)椋?
所以,數(shù)列是首項(xiàng)、公差為的等差數(shù)列,。
(2)由(1)可知,,,
所以,。
【點(diǎn)睛】本題考查了數(shù)列的相關(guān)性質(zhì),主要考查了等差數(shù)列以及等比數(shù)列的相關(guān)證明,證明數(shù)列是等差數(shù)列或者等比數(shù)列一定要結(jié)合等差數(shù)列或者等比數(shù)列的定義,考查推理能力,考查化歸與轉(zhuǎn)化思想,是中檔題。
20.
已知函數(shù).
(1)討論f(x)的單調(diào)性,并證明f(x)有且僅有兩個(gè)零點(diǎn);
(2)設(shè)x0是f(x)的一個(gè)零點(diǎn),證明曲線y=ln x 在點(diǎn)A(x0,ln x0)處的切線也是曲線的切線.
【答案】(1)函數(shù)在和上是單調(diào)增函數(shù),證明見解析;
(2)證明見解析.
【解析】
【分析】
(1)對(duì)函數(shù)求導(dǎo),結(jié)合定義域,判斷函數(shù)的單調(diào)性;
(2)先求出曲線在處的切線,然后求出當(dāng)曲線切線的斜率與斜率相等時(shí),證明曲線切線在縱軸上的截距與在縱軸的截距相等即可.
【詳解】(1)函數(shù)的定義域?yàn)椋?
,因?yàn)楹瘮?shù)的定義域?yàn)?,所以,因此函?shù)在和上是單調(diào)增函數(shù);
當(dāng),時(shí),,而,顯然當(dāng),函數(shù)有零點(diǎn),而函數(shù)在上單調(diào)遞增,故當(dāng)時(shí),函數(shù)有唯一的零點(diǎn);
當(dāng)時(shí),,
因?yàn)?,所以函?shù)在必有一零點(diǎn),而函數(shù)在上是單調(diào)遞增,故當(dāng)時(shí),函數(shù)有唯一的零點(diǎn)
綜上所述,函數(shù)的定義域內(nèi)有2個(gè)零點(diǎn);
(2)因?yàn)槭堑囊粋€(gè)零點(diǎn),所以
,所以曲線在處的切線的斜率,故曲線在處的切線的方程為:而,所以的方程為,它在縱軸的截距為.
設(shè)曲線的切點(diǎn)為,過切點(diǎn)為切線,,所以在處的切線的斜率為,因此切線的方程為,
當(dāng)切線的斜率等于直線的斜率時(shí),即,
切線在縱軸的截距為,而,所以,直線的斜率相等,在縱軸上的截距也相等,因此直線重合,故曲線在處的切線也是曲線的切線.
【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求已知函數(shù)的單調(diào)性、考查了曲線的切線方程,考查了數(shù)學(xué)運(yùn)算能力.
21.
已知點(diǎn)A(?2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AM與BM的斜率之積為?.記M的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線;
(2)過坐標(biāo)原點(diǎn)的直線交C于P,Q兩點(diǎn),點(diǎn)P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.
(i)證明:是直角三角形;
(ii)求面積的最大值.
(二)選考題:共10分.請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分.
【答案】(1)詳見解析(2)詳見解析
【解析】
【分析】
(1)分別求出直線AM與BM的斜率,由已知直線AM與BM的斜率之積為?,可以得到等式,化簡(jiǎn)可以求出曲線C的方程,注意直線AM與BM有斜率的條件;
(2)(i)設(shè)出直線的方程,與橢圓方程聯(lián)立,求出P,Q兩點(diǎn)的坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),求出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出的坐標(biāo),再求出直線的斜率,計(jì)算的值,就可以證明出是直角三角形;
(ii)由(i)可知三點(diǎn)坐標(biāo),是直角三角形,求出的長(zhǎng),利用面積公式求出的面積,利用導(dǎo)數(shù)求出面積的最大值.
【詳解】(1)直線的斜率為,直線的斜率為,由題意可知:,所以曲線C是以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,不包括左右兩頂點(diǎn)的橢圓,其方程為;
(2)(i)設(shè)直線的方程為,由題意可知,直線的方程與橢圓方程聯(lián)立,即或,點(diǎn)P在第一象限,所以,因此點(diǎn)的坐標(biāo)為
直線的斜率為,可得直線方程:,與橢圓方程聯(lián)立,,消去得,(*),設(shè)點(diǎn),顯然點(diǎn)的橫坐標(biāo)和是方程(*)的解
所以有,代入直線方程中,得
,所以點(diǎn)的坐標(biāo)為,
直線的斜率為; ,
因?yàn)樗?,因此是直角三角形?
(ii)由(i)可知:,
的坐標(biāo)為,
,
,
,因?yàn)椋援?dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,因此當(dāng)時(shí),函數(shù)有最大值,最大值為.
【點(diǎn)睛】本題考查了求橢圓的標(biāo)準(zhǔn)方程,以及利用直線與橢圓的位置關(guān)系,判斷三角形形狀以及三角形面積最大值問題,考查了數(shù)學(xué)運(yùn)算能力,考查了利用導(dǎo)數(shù)求函數(shù)最大值問題.
22.[選修4-4:坐標(biāo)系與參數(shù)方程]
在極坐標(biāo)系中,O為極點(diǎn),點(diǎn)在曲線上,直線l過點(diǎn)且與垂直,垂足為P.
(1)當(dāng)時(shí),求及l(fā)的極坐標(biāo)方程;
(2)當(dāng)M在C上運(yùn)動(dòng)且P在線段OM上時(shí),求P點(diǎn)軌跡的極坐標(biāo)方程.
【答案】(1),l的極坐標(biāo)方程為;(2)
【解析】
【分析】
(1)先由題意,將代入即可求出;根據(jù)題意求出直線的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可;
(2)先由題意得到P點(diǎn)軌跡的直角坐標(biāo)方程,再化為極坐標(biāo)方程即可,要注意變量的取值范圍.
【詳解】(1)因?yàn)辄c(diǎn)在曲線上,
所以;
即,所以,
因?yàn)橹本€l過點(diǎn)且與垂直,
所以直線的直角坐標(biāo)方程為,即;
因此,其極坐標(biāo)方程為,即l的極坐標(biāo)方程為;
(2)設(shè),則, ,
由題意,,所以,故,整理得,
因?yàn)镻在線段OM上,M在C上運(yùn)動(dòng),所以,
所以,P點(diǎn)軌跡的極坐標(biāo)方程為,即.
【點(diǎn)睛】本題主要考查極坐標(biāo)方程與直角坐標(biāo)方程的互化,熟記公式即可,屬于??碱}型.
23.[選修4-5:不等式選講]
已知
(1)當(dāng)時(shí),求不等式的解集;
(2)若時(shí),,求的取值范圍.
【答案】(1);(2)
【解析】
【分析】
(1)根據(jù),將原不等式化為,分別討論,,三種情況,即可求出結(jié)果;
(2)分別討論和兩種情況,即可得出結(jié)果.
【詳解】(1)當(dāng)時(shí),原不等式可化為;
當(dāng)時(shí),原不等式可化為,即,顯然成立,
此時(shí)解集為;
當(dāng)時(shí),原不等式可化為,解得,此時(shí)解集為空集;
當(dāng)時(shí),原不等式可化為,即,顯然不成立;此時(shí)解集為空集;
綜上,原不等式解集為;
(2)當(dāng)時(shí),因?yàn)?,所以由可得?
即,顯然恒成立;所以滿足題意;
當(dāng)時(shí),,因?yàn)闀r(shí), 顯然不能成立,所以不滿足題意;
綜上,的取值范圍是.
【點(diǎn)睛】本題主要考查含絕對(duì)值的不等式,熟記分類討論的方法求解即可,屬于??碱}型.