2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)7 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 理

上傳人:Sc****h 文檔編號(hào):116802081 上傳時(shí)間:2022-07-06 格式:DOC 頁(yè)數(shù):7 大?。?.60MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)7 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 理_第1頁(yè)
第1頁(yè) / 共7頁(yè)
2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)7 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 理_第2頁(yè)
第2頁(yè) / 共7頁(yè)
2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)7 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 理_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)7 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題限時(shí)集訓(xùn)7 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 理(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、專題限時(shí)集訓(xùn)(七) 空間幾何體的表面積、體積及有關(guān)量的計(jì)算 [專題通關(guān)練] (建議用時(shí):30分鐘) 1.在一個(gè)密閉透明的圓柱筒內(nèi)裝一定體積的水,將該圓柱筒分別豎直、水平、傾斜放置時(shí),指出圓柱桶內(nèi)的水平面可以呈現(xiàn)出的幾何形狀不可能是(  ) A.圓面      B.矩形面 C.梯形面 D.橢圓面或部分橢圓面 C [將圓柱桶豎放,水面為圓面;將圓柱桶斜放,水面為橢圓面或部分橢圓面;將圓柱桶水平放置,水面為矩形面,所以圓柱桶內(nèi)的水平面可以呈現(xiàn)出的幾何形狀不可能是梯形面,故選C.] 2.[易錯(cuò)題]一個(gè)正方體的內(nèi)切球O1、外接球O2、與各棱都相切的球O3的半徑之比為(  ) A.1∶3

2、∶2     B.1∶1∶1 C.1∶∶ D.1∶2∶3 C [設(shè)正方體的棱長(zhǎng)為1,則其內(nèi)切球O1的半徑為,外接球O2的半徑為(正方體體對(duì)角線的一半),與各棱都相切的球O3的半徑為(正方體面對(duì)角線的一半),所以它們的半徑之比是1∶∶,故選C.] 3.已知三棱錐P-ABC中,PB⊥平面ABC,∠ABC=90°,PA=,AB=BC=1,則三棱錐P-ABC 的外接球的表面積為(  ) A.12π B.6π C.24π D. B [如圖, ∵PB⊥平面ABC,∴PB⊥AB, ∵AB=1,PA=,∴PB=2, 又AB⊥BC,把三棱錐P-ABC補(bǔ)形為長(zhǎng)方體,則長(zhǎng)方體對(duì)角線長(zhǎng)為=,

3、則三棱錐P-ABC外接球的半徑為, ∴三棱錐P-ABC的外接球的表面積為4π×=6π.故選B.] 4.[重視題]兩個(gè)相同的正四棱錐底面重合組成一個(gè)八面體,可放于棱長(zhǎng)為1的正方體中,重合的底面與正方體的某一個(gè)面平行,各頂點(diǎn)均在正方體的表面上(如圖),該八面體的體積可能值有(  ) A.1個(gè) B.2個(gè) C.3個(gè) D.無數(shù)個(gè) D [設(shè)ABCD與正方體的截面四邊形為A′B′C′D′,設(shè)AA′=x(0≤x≤1),則AB′=1-x, |AD|2=x2+(1-x)2=2+, 故S四邊形ABCD=|AD|2∈, V=S四邊形ABCD·h·2=S四邊形ABCD∈. ∴該八面體的體積可能值有

4、無數(shù)個(gè),故選D.] 5.已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為,D為BC的中點(diǎn),則三棱錐A-B1DC1的體積為(  ) A.3 B. C.1 D. C [∵D是等邊三角形ABC的邊BC的中點(diǎn), ∴AD⊥BC. 又ABC-A1B1C1為正三棱柱, ∴AD⊥平面BB1C1C. ∵四邊形B為矩形,∴S=S=×2×=.又AD=2×=, ∴V=S·AD=××=1.故選C.] 6.如圖所示,圖中陰影部分繞AB旋轉(zhuǎn)一周所形成的幾何體的體積為________.  [由題知,旋轉(zhuǎn)一周后形成的幾何體是一圓臺(tái)去掉一個(gè)半球,其中圓臺(tái)的體積為V=×(π×22++π×5

5、2)×4=52π,半球的體積V=××π×23=,則所求體積為52π-=.] 7.魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源與古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱.從外表上看,六根等長(zhǎng)的正四棱柱體分成三組,經(jīng)90°榫卯起來,如圖,若正四棱柱體的高為6,底面正方形的邊長(zhǎng)為1,現(xiàn)將該魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器的表面積的最小值為________.(容器壁的厚度忽略不計(jì)) 41π [由題意,該球形容器的半徑的最小值為:=, ∴該球形容器的表面積的最小值為4π·=41π.] 8.

6、三棱錐P-ABC的四個(gè)頂點(diǎn)均在同一個(gè)球面上,其中PA⊥平面ABC,△ABC是正三角形,PA=2BC=4,則該球的表面積為________.  [球心應(yīng)位于過正三角形ABC的中心且垂直于平面ABC的直線上,又PA⊥平面ABC,PA=4,所以球心O到平面ABC的距離為2,所以球的半徑r==,所以球的表面積為S=4πr2=.] [能力提升練] (建議用時(shí):15分鐘) 9.(2019·成都七中模擬)《九章算術(shù)》中將底面是直角三角形、側(cè)棱垂直于底面的三棱柱稱之為“塹堵”,現(xiàn)有一“塹堵”型石材,其底面三邊長(zhǎng)分別為3,4,5,若此石材恰好可以加工成一個(gè)最大的球體,則其高為(  ) A.4 B.3

7、 C.2 D.1 C [ 如圖,是過球心且與底面平行的軸截面,設(shè)球的半徑為r,由AC=3,BC=4,可得AB=5,由等面積法可得:×3×4=(3+4+5)r,解得r=1.∴此石材d的高為2r=2.故選C.] 10.(2019·唐山二模)某幾何體的三視圖如圖所示,則該幾何體的表面積為(  ) A.16π B.14π C.10π D.8π C [根據(jù)三視圖知,該幾何體是半球體截去一個(gè)圓錐體剩余部分,畫出圖形如圖所示; 結(jié)合圖中數(shù)據(jù),計(jì)算該幾何體的表面積為 S=S半球表面積+S半球底面圓+S圓錐側(cè)面積-S圓錐底面圓=2π·()2+π·()2+π·1·-π·12=10π.故

8、選C.] 11.一塊邊長(zhǎng)為6 cm的正方形鐵皮按如圖1所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖2放置,若其正視圖為等腰直角三角形,則該容器的體積為(  ) 圖1             圖2 A.12 cm3 B.4 cm3 C.27 cm3 D.9 cm3 D [如圖2,△PMN為該四棱錐的正視圖,由圖1可知,PM+PN=6,且PM=PN,由△PMN為等腰直角三角形,可知MN=3,PM=3.設(shè)MN中點(diǎn)為O,則PO⊥平面ABCD,∴PO=MN=,∴VP-ABCD=×2×=×18×=9.選D. ] 圖1         圖2

9、 12.[重視題]正三棱錐S-ABC的底面邊長(zhǎng)為a,各側(cè)面的頂角為30°,D為側(cè)棱SC的中點(diǎn),截面△DEF過D且平行于AB.當(dāng)△DEF的周長(zhǎng)最小時(shí),截得的三棱錐S-DEF的側(cè)面積為________. a2 [將正三棱錐的側(cè)面展開(如圖所示),可得三個(gè)頂角均為30°的等腰三角形,底面邊長(zhǎng)為a,D′為SC′的中點(diǎn),DD′的連線長(zhǎng)即為最短. ∵DD′∥CC′∥A′B′,∴E′,F(xiàn)′即為相對(duì)應(yīng)的E,F(xiàn). 在△SCB′中,B′C=a,∠CSB′=30°, 則SC=SB′=. 又∵∠CSC′=90°, ∴DD′=CC′=·a·=a, 即為截面△DEF的周長(zhǎng)的最小值, 這時(shí),三棱錐S-DEF

10、的側(cè)面展開圖的頂角為90°, ∴S△SDD′==a2.] 題號(hào) 內(nèi)容 押題依據(jù) 1 數(shù)學(xué)文化、錐體的體積、柱體的表面積、不等式 高考熱點(diǎn)之一,通過對(duì)幾何體的體積計(jì)算實(shí)現(xiàn)知識(shí)間的融合考查了學(xué)生的空間想象和數(shù)學(xué)運(yùn)算的素養(yǎng) 2 球的切接體積的最值問題 有關(guān)球的切接及體積的最值問題一直是高考的熱點(diǎn),考查學(xué)生的動(dòng)態(tài)分析問題能力 【押題1】 《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早一千多年.例如“塹堵”指的是底面為直角三角形,且側(cè)棱垂直于底面的三棱柱;“陽(yáng)馬”指的是底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖所示,在塹堵ABC-A1B1C1中,AC⊥BC,A1A=

11、AB=2,當(dāng)塹堵ABC-A1B1C1的側(cè)面積取得最大值時(shí),陽(yáng)馬B-A1ACC1的體積為(  ) A.    B. C.4 D. A [根據(jù)題意,設(shè)AC=x,BC=y(tǒng),則有x2+y2=4,塹堵ABC-A1B1C1的側(cè)面積S側(cè)=(2+x+y)×2=4+2(x+y)≤4+2=4+2,當(dāng)且僅當(dāng)x=y(tǒng)=時(shí)取等號(hào),此時(shí)陽(yáng)馬B-A1ACC1的體積V=×AC×CC1×BC=××2×=,故選A. 【押題2】 如圖,三棱錐A-BCD中,AD⊥BD,AC⊥BC,∠DAB=,∠BAC=.三棱錐的外接球的表面積為16π,則該三棱錐的體積的最大值為(  ) A. B. C. D. B [設(shè)外接球的半徑為R.由題意得,4πR2=16π,解得R=2.由題意知△ADB,△ABC都是直角三角形,所以三棱錐A-BCD的外接球的球心為AB的中點(diǎn),且AB=4.由∠DAB=,∠BAC=,可求得AD=2,BD=2,AC=BC=2.當(dāng)三棱錐A-BCD的體積最大時(shí),平面ADB⊥平面ABC.所以三棱錐的體積的最大值為V三棱錐A-BCD=V三棱錐C-ABD=××2×2×2=.故選B.] - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!