《基本不等式的應(yīng)用》PPT課件

上傳人:san****019 文檔編號(hào):22701940 上傳時(shí)間:2021-05-30 格式:PPT 頁數(shù):25 大?。?00KB
收藏 版權(quán)申訴 舉報(bào) 下載
《基本不等式的應(yīng)用》PPT課件_第1頁
第1頁 / 共25頁
《基本不等式的應(yīng)用》PPT課件_第2頁
第2頁 / 共25頁
《基本不等式的應(yīng)用》PPT課件_第3頁
第3頁 / 共25頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《《基本不等式的應(yīng)用》PPT課件》由會(huì)員分享,可在線閱讀,更多相關(guān)《《基本不等式的應(yīng)用》PPT課件(25頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、基本不等式的應(yīng)用( , 0)2a b ab a b 我 思,故 我 在江門市杜阮華僑中學(xué) 教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):用基本不等式解決實(shí)際問題,解決的關(guān)鍵是通過轉(zhuǎn)化,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)的球最值問題。難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。 思維活動(dòng): 2 2 1 22x xy xx (5)求函數(shù) 的最大值_ 放 飛 思 維 的 翅 膀 _041的值域函數(shù) xxxy 2 5 20,x y (2)已知 且 求 的最大值_0, 0,x y xy 10_)2(1)3(的最小值 xxxy 25 1 22y x xx (4)求函數(shù) 的最小值_40 4 例1:用籬笆圍城一個(gè)面積為100平方米的矩形菜園,問這個(gè)矩形的長、寬

2、各為多少時(shí)所用的籬笆最短。最短的籬笆是多少? 例1:用籬笆圍城一個(gè)面積為100平方米的矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí)所用的籬笆最短。最短的籬笆是多少?,x ym 100 xy 0, 0 x y 2 x y m( 0, 0)2x yxy x y 2 40 x y 10 x y 10m解:(1)設(shè)矩形的長、寬各為,由題意可得且。則籬笆的長可表示為,根據(jù)得,當(dāng)且僅當(dāng)時(shí)取等號(hào),故長、寬均為時(shí),所用的籬笆最短。且得時(shí)取等號(hào),故長、寬均為時(shí),所用的籬笆最短。 例2:一段長為36米的籬笆圍成一個(gè)矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少? 例2:一段長為36米的籬笆圍成一

3、個(gè)矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少? ,x ym 362 yx 0, 0 x y 2xym( 0, 0)2x yxy x y 81xy9 yx解:(1)設(shè)矩形的長、寬各為,由題意可得且。矩形的面積為由得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。 1:一段長為30米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長18米,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大?最大面積是多少?變式練習(xí):(1)若墻的長度為15米呢?(2)若墻的長度為12米呢?練習(xí) 設(shè)矩形的長為x m,寬為y m菜園的面積為s 則 2m302 yx xys 由基本不等式的性質(zhì),可得yxs 221 2)22(21 yx

4、490021 2225即當(dāng),2yx 22225215,15 myx最大面積是時(shí),菜園面積最大, 例3 某工廠要建造長方形無蓋貯水池,其容積為4800 ,深為3m。如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低總造價(jià)是多少?3m )3*23*2(*12034800*150 yxz 解:設(shè)底面的長為為x m,寬為y m,水池總造價(jià)為z元根據(jù)題意,有 )(720240000 yx 由容積為4800 ,可得3m 48003 xy 1600 xy)(720240000 yxz xy2*720240000 16002*720240000z即297600z當(dāng)

5、x=y,即x=y=40時(shí),等號(hào)成立所以,將水池的底面設(shè)計(jì)成邊長為40m的正方形時(shí)總造價(jià)最低,最低總造價(jià)是297600當(dāng)即時(shí),等號(hào)成立因此由基本不等式與不等式的性質(zhì),可得 練習(xí)2 做一個(gè)體積為32 ,高為2m的長方體紙盒,底面的長與寬取什么值時(shí)用紙最少? 練習(xí)2 做一個(gè)體積為32 ,高為2m的長方體紙盒,底面的長與寬取什么值時(shí)用紙最少?3m練習(xí)做一個(gè)體積為,高為的長方體紙盒,底面的長與寬取什么值時(shí)用紙最少? 練習(xí)2 做一個(gè)體積為32 ,高為2m的長方體紙盒,底面的長與寬取什么值時(shí)用紙最少?3m 0,0 ba3m設(shè)底面的長與寬分別為a m ,b m . 因?yàn)轶w積等于32 高為c=2m所以底面積為1

6、6 ,即即即即練習(xí)做一個(gè)體積為,高為的長方體紙盒,底面的長與寬取什么值時(shí)用紙最少?即解16ab所以,用紙面積是acbcabs 222 )(432 ba ab4232 64時(shí)取等號(hào)當(dāng)且僅當(dāng)4ba 米時(shí),用紙最少為答:當(dāng)?shù)酌娴拈L與寬均4 2m 思考:甲,乙兩地相距s km,汽車從甲地勻速行駛到乙地,速度不得超過c km/h。已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(單位:km/h)的平方成正比,且比例系數(shù)為b;固定部分為a元(a ).為了使全程運(yùn)輸成本最小,汽車應(yīng)以多大速度行駛?2bc 課堂小結(jié)n知識(shí)要點(diǎn):(1)重要不等式和基本不等式的條件及結(jié)構(gòu) 特征(2)

7、基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義 n思想方法技巧:(1) “整體與局部” (2)換元法、分析法(3)配湊等技巧 研究性作業(yè)不知大家是否注意到許多碳酸飲料和啤酒的包裝都是圓柱形的,廠家在固定飲料容量(不妨設(shè)為V)的情況下,如何使用包裝用料成為節(jié)省成本的一項(xiàng)重要研究內(nèi)容,你能為廠家節(jié)約成本提供一些信息嗎? 假設(shè)你是超市的經(jīng)理,超市的大米銷售流程如下圖所示:問題情境:數(shù) 學(xué) 源 于 生 活進(jìn)貨運(yùn)輸銷售 超市計(jì)劃在同一地點(diǎn)進(jìn)貨兩次,有兩種進(jìn)貨方案。方案一、每次購買大米M千克;方案二、每次用N元購買。(兩次進(jìn)貨單價(jià)不同,設(shè)第一次為a元/千克,第二次為b元/千克),則選用哪種進(jìn)貨方式合算?情境

8、一:進(jìn)貨“合算”的含義 :(2)每千克大米花費(fèi)的錢最少(1)每一元錢購買的大米最多問 題 是 數(shù) 學(xué) 的 心 臟 10000 xyxy 2( )z x y 解:(2)約束條件為目標(biāo)函數(shù)結(jié)合所學(xué)的線型規(guī)劃的知識(shí)求出目標(biāo)函數(shù)的最大值及相應(yīng)的最優(yōu)解。 三維目標(biāo) 一 知識(shí)與技能 1.構(gòu)建基本不等式解決函數(shù)的值域,最值問題; 2.讓學(xué)生探究用基本不等式解決實(shí)際問題; 二 過程與方法 1. 情境二:運(yùn)輸進(jìn)貨結(jié)束后裝車運(yùn)回。所購大米需裝6輛卡車,途徑一座長為100米的大橋,假設(shè)卡車均以v(m/s)的速度勻速前進(jìn),并出于安全考慮規(guī)定每兩輛卡車的間距不得小于 m(卡車長忽略不計(jì)),則全部卡車安全過橋最快需多少時(shí)

9、間?25v興 趣 是 最 好 的 老 師 當(dāng)且僅當(dāng) 即v=10米/秒, 100 vv 答:每兩輛車均相距 20 米,且速度為10米/秒, 所用時(shí)間最少為20秒。解:設(shè)卡車全部安全過橋共需t 秒, 第六輛汽車與第一輛汽車相距至少為 25 5v米.每兩輛汽車都相距20米時(shí),上式取等號(hào),此時(shí)t=20(秒)。100 vv 2 100 =20(秒)2100 5 5vv t 解 題 是 數(shù) 學(xué) 的 關(guān) 鍵 情境三:銷售 現(xiàn)已知進(jìn)貨單價(jià)第一次為1.8元/千克,第二次為2.2元/千克。若以2.4元/千克出售,則每天可售出1000千克,而如果每千克提價(jià)0.01元,每天將少售出10千克,如果每千克降價(jià)0.01元,每天將多售出10千克。那么請考慮,每千克售價(jià)應(yīng)為多少元,才能使每天的利潤最大。學(xué) 海 無 涯 苦 作 舟 課 堂 小 結(jié)實(shí)際問題數(shù)學(xué)模型提煉模型的解數(shù)學(xué)知識(shí)數(shù)學(xué)結(jié)論分析總結(jié)回歸(1)應(yīng)用基本不等式求最值。(2)應(yīng)用基本不等式解決實(shí)際應(yīng)用題。來 而 不 往 ,非 禮 也

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!