第一章解三角形

上傳人:清*** 文檔編號(hào):24362419 上傳時(shí)間:2021-06-28 格式:DOC 頁數(shù):19 大?。?.80MB
收藏 版權(quán)申訴 舉報(bào) 下載
第一章解三角形_第1頁
第1頁 / 共19頁
第一章解三角形_第2頁
第2頁 / 共19頁
第一章解三角形_第3頁
第3頁 / 共19頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《第一章解三角形》由會(huì)員分享,可在線閱讀,更多相關(guān)《第一章解三角形(19頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 1.1.1 正弦定理 學(xué)習(xí)目標(biāo) 1. 掌握正弦定理的內(nèi)容; 2. 掌握正弦定理的證明方法; 3. 會(huì)運(yùn)用正弦定理解斜三角形的兩類基本問題. 學(xué)習(xí)過程 一、課前準(zhǔn)備 試驗(yàn):固定ABC的邊CB及B,使邊AC繞著頂點(diǎn)C轉(zhuǎn)動(dòng). 思考:C的大小與它的對(duì)邊AB的長(zhǎng)度之間有怎樣的數(shù)量關(guān)系? 顯然,邊AB的長(zhǎng)度隨著其對(duì)角C的大小的增大而 .能否用一個(gè)等式把這種關(guān)系精確地表示出來? 二、新課導(dǎo)學(xué) ※ 學(xué)習(xí)探究 探究1:在初中,我們已學(xué)過如何解

2、直角三角形,下面就首先來探討直角三角形中,角與邊的等式關(guān)系. 如圖,在RtABC中,設(shè)BC=a,AC=b,AB=c, 根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義, 有,,又, 從而在直角三角形ABC中,. ( 探究2:那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立? 可分為銳角三角形和鈍角三角形兩種情況: 當(dāng)ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義, 有CD=,則, 同理可得,

3、 從而. 類似可推出,當(dāng)ABC是鈍角三角形時(shí),以上關(guān)系式仍然成立.請(qǐng)你試試導(dǎo). 新知:正弦定理 在一個(gè)三角形中,各邊和它所對(duì)角的 的比相等,即 . 試試: (1)在中,一定成立的等式是( ). A. B. C. D. (2)已知△ABC中,a=4,b=8,∠A=30,則∠B等于 . [理解定理] (1)正弦定理說明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存

4、在正數(shù)k使, ,; (2)等價(jià)于 ,,. (3)正弦定理的基本作用為: ①已知三角形的任意兩角及其一邊可以求其他邊,如; . ②已知三角形的任意兩邊與其中一邊的對(duì)角可以求其他角的正弦值, 如; . (4)一般地,已知三角形的某些邊和角,求其它的邊和角的過程叫作解三角形. ※ 典型例題 例1. 在中,已知,,cm,解三角形. 變式:在中,已知,,cm,解三角形. 例2. 在.

5、 變式:在. 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 正弦定理: 2. 正弦定理的證明方法:①三角函數(shù)的定義, 還有 ②等積法,③外接圓法,④向量法. 3.應(yīng)用正弦定理解三角形: ①已知兩角和一邊; ②已知兩邊和其中一邊的對(duì)角. ※ 知識(shí)拓展 ,其中為外接圓直徑. 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 在中,若,則是( ). A.等腰三角形 B.等腰三角形或直角三角形 C.直角三角形 D.等邊三角形 2. 已知△A

6、BC中,A∶B∶C=1∶1∶4, 則a∶b∶c等于( ).  A.1∶1∶4 B.1∶1∶2  C.1∶1∶ D.2∶2∶ 3. 在△ABC中,若,則與的大小關(guān)系為( ). A. B. C. ≥ D. 、的大小關(guān)系不能確定 4. 已知ABC中,,則= . 5. 已知ABC中,A,,則 = .   課后作業(yè) 1. 已知△ABC中,AB=6,∠A=30,∠B=,解此三角形.

7、 2. 已知△ABC中,sinA∶sinB∶sinC=k∶(k+1)∶2k (k≠0),求實(shí)數(shù)k的取值范圍為. 1.1.2 余弦定理 學(xué)習(xí)目標(biāo) 1. 掌握余弦定理的兩種表示形式; 2. 證明余弦定理的向量方法; 3. 運(yùn)用余弦定理解決兩類基本的解三角形問題. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:在一個(gè)三角形中,各 和它所對(duì)角的 的 相等,即 = = . 復(fù)習(xí)2:在△ABC中,已知,A=45,C=30,解此三角形.

8、 思考:已知兩邊及夾角,如何解此三角形呢? 二、新課導(dǎo)學(xué) ※ 探究新知 問題:在中,、、的長(zhǎng)分別為、、. ∵ , ∴ 同理可得: , . 新知:余弦定理:三角形中任何一邊的 等于其他兩邊的 的和減去這兩邊與它們的夾角的 的積的兩倍. 思考:這個(gè)式子中有幾個(gè)量? 從方程的角度看已知其中三個(gè)量,可以求出第四個(gè)量,能否由三邊求出一角? 從余弦定理,又可得到以下推論: , ,

9、 . [理解定理] (1)若C=,則 ,這時(shí) 由此可知余弦定理是勾股定理的推廣,勾股定理是余弦定理的特例. (2)余弦定理及其推論的基本作用為: ①已知三角形的任意兩邊及它們的夾角就可以求出第三邊; ②已知三角形的三條邊就可以求出其它角. 試試: (1)△ABC中,,,,求. (2)△ABC中,,,,求. ※ 典型例題 例1. 在△ABC中,已知,,,求和. 變式:在△ABC中,若AB=,A

10、C=5,且cosC=,則BC=________. 例2. 在△ABC中,已知三邊長(zhǎng),,,求三角形的最大內(nèi)角. 變式:在ABC中,若,求角A. 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 余弦定理是任何三角形中邊角之間存在的共同規(guī)律,勾股定理是余弦定理的特例; 2. 余弦定理的應(yīng)用范圍: ① 已知三邊,求三角; ② 已知兩邊及它們的夾角,求第三邊. ※ 知識(shí)拓展 在△ABC中, 若,則角是直

11、角; 若,則角是鈍角; 若,則角是銳角. 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 已知a=,c=2,B=150,則邊b的長(zhǎng)為( ). A. B. C. D. 2. 已知三角形的三邊長(zhǎng)分別為3、5、7,則最大角為( ). A. B. C. D. 3. 已知銳角三角形的邊長(zhǎng)分別為2、3、x,則x的取值范圍是( ). A. B.<x<5   C. 2<x< D.<x<5 4. 在△ABC中,||=3,||=2,與的夾角為60,則|-|=_____

12、___. 5. 在△ABC中,已知三邊a、b、c滿足 ,則∠C等于 . 課后作業(yè) 1. 在△ABC中,已知a=7,b=8,cosC=,求最大角的余弦值. 2. 在△ABC中,AB=5,BC=7,AC=8,求的值. 1.1 正弦定理和余弦定理(練習(xí)) 學(xué)習(xí)目標(biāo) 1. 進(jìn)一步熟悉正、余弦定理內(nèi)容; 2. 掌握在已知三角形的兩邊及其中一邊的對(duì)角解三角形時(shí),有兩解或一解或無解等情形. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:在解三角形時(shí)

13、 已知三邊求角,用 定理; 已知兩邊和夾角,求第三邊,用 定理; 已知兩角和一邊,用 定理. 復(fù)習(xí)2:在△ABC中,已知 A=,a=25,b=50,解此三角形. 二、新課導(dǎo)學(xué) ※ 學(xué)習(xí)探究 探究:在△ABC中,已知下列條件,解三角形. ① A=,a=25,b=50; ② A=,a=,b=50; ③ A=,a=50,b=50. 思考:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化? 新知:用如下圖示分析解的情況(A為銳

14、角時(shí)). 試試: 1. 用圖示分析(A為直角時(shí))解的情況? 2.用圖示分析(A為鈍角時(shí))解的情況? ※ 典型例題 例1. 在ABC中,已知,,,試判斷此三角形的解的情況. 變式:在ABC中,若,,,則符合題意的b的值有_____個(gè). 例2. 在ABC中,,,,求的值. 變式:在ABC中,若,,且,求角C.

15、 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 已知三角形兩邊及其夾角(用余弦定理解決); 2. 已知三角形三邊問題(用余弦定理解決); 3. 已知三角形兩角和一邊問題(用正弦定理解決); 4. 已知三角形兩邊和其中一邊的對(duì)角問題(既可用正弦定理,也可用余弦定理,可能有一解、兩解和無解三種情況). ※ 知識(shí)拓展 在ABC中,已知,討論三角形解的情況 :①當(dāng)A為鈍角或直角時(shí),必須才能有且只有一解;否則無解; ②當(dāng)A為銳角時(shí), 如果≥,那么只有一解; 如果,那么可以分下面三種情況來討論: (1)若,則有兩解; (2)若,則只有一解; (3)若,則無解. 學(xué)習(xí)評(píng)價(jià)

16、※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 已知a、b為△ABC的邊,A、B分別是a、b的對(duì)角,且,則的值=( ). A. B. C. D. 2. 已知在△ABC中,sinA∶sinB∶sinC=3∶5∶7,那么這個(gè)三角形的最大角是( ).   A.135 B.90  C.120 D.150 3. 如果將直角三角形三邊增加同樣的長(zhǎng)度,則新三角形形狀為( ). A.銳角三角形 B.直角三角形 C.鈍角三角形 D.由增加長(zhǎng)度決定 4. 在△ABC中,sinA:sinB:sinC=4:5:6,則cos

17、B= . 5. 已知△ABC中,,試判斷△ABC的形狀 . 課后作業(yè) 1. 在ABC中,,,,如果利用正弦定理解三角形有兩解,求x的取值范圍. 2. 在ABC中,其三邊分別為a、b、c,且滿足,求角C. 1.2應(yīng)用舉例—①測(cè)量距離 學(xué)習(xí)目標(biāo) 能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量距離的實(shí)際問題 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:在△ABC中,∠C=60,a+b=,c=2,則∠A為

18、 . 復(fù)習(xí)2:在△ABC中,sinA=,判斷三角形的形狀. 二、新課導(dǎo)學(xué) ※ 典型例題 例1. 如圖,設(shè)A、B兩點(diǎn)在河的兩岸,要測(cè)量?jī)牲c(diǎn)之間的距離,測(cè)量者在A的同側(cè),在所在的河岸邊選定一點(diǎn)C,測(cè)出AC的距離是55m,BAC=,ACB=. 求A、B兩點(diǎn)的距離(精確到0.1m). 提問1:ABC中,根據(jù)已知的邊和對(duì)應(yīng)角,運(yùn)用哪個(gè)定理比較適當(dāng)? 提問2:運(yùn)用該定理解題還需要那些邊和角呢? 分析:這是一道關(guān)于測(cè)量從一個(gè)可到達(dá)的點(diǎn)到一個(gè)不可到達(dá)的點(diǎn)之間的距離的問題

19、題目條件告訴了邊AB的對(duì)角,AC為已知邊, 再根據(jù)三角形的內(nèi)角和定理很容易根據(jù)兩個(gè)已知角算出AC的對(duì)角, 應(yīng)用正弦定理算出AB邊. 新知1:基線 在測(cè)量上,根據(jù)測(cè)量需要適當(dāng)確定的 叫基線. 例2. 如圖,A、B兩點(diǎn)都在河的對(duì)岸(不可到達(dá)),設(shè)計(jì)一種測(cè)量A、B兩點(diǎn)間距離的方法. 分析:這是例1的變式題,研究的是兩個(gè) 的點(diǎn)之間的距離測(cè)量問題. 首先需要構(gòu)造三角形,所以需要確定C、D兩點(diǎn). 根據(jù)正弦定理中已知三角形的任意兩個(gè)內(nèi)角與一邊既可求出另兩邊的方法,分別求出AC和BC, 再利用余弦定理

20、可以計(jì)算出AB的距離. 變式:若在河岸選取相距40米的C、D兩點(diǎn),測(cè)得BCA=60,ACD=30,CDB=45,BDA =60. 練:兩燈塔A、B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東30,燈塔B在觀察站C南偏東60,則A、B之間的距離為多少? 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 解斜三角形應(yīng)用題的一般步驟: (1)分析:理解題意,分清已知與未知,畫出示意圖 (2)建模:根據(jù)已知條件與求解

21、目標(biāo),把已知量與求解量盡量集中在有關(guān)的三角形中,建立一個(gè)解斜三角形的數(shù)學(xué)模型; (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得數(shù)學(xué)模型的解 (4)檢驗(yàn):檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問題的解. 2.基線的選?。? 測(cè)量過程中,要根據(jù)需要選取合適的基線長(zhǎng)度,使測(cè)量具有較高的精確度. 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: P A C 1. 水平地面上有一個(gè)球,現(xiàn)用如下方法測(cè)量球的大小,用銳角的等腰直角三角板的斜邊緊靠球面,P為切點(diǎn),一條直角邊AC緊靠地面,并使三角板與地面垂直,如果測(cè)得PA=5cm

22、,則球的半徑等于( ). A.5cm B. C. D.6cm 2. 臺(tái)風(fēng)中心從A地以每小時(shí)20千米的速度向東北方向移動(dòng),離臺(tái)風(fēng)中心30千米內(nèi)的地區(qū)為危險(xiǎn)區(qū),城市B在A的正東40千米處,B城市處于危險(xiǎn)區(qū)內(nèi)的時(shí)間為( ). A.0.5小時(shí)    B.1小時(shí)   C.1.5小時(shí)    D.2小時(shí) 3. 在中,已知, 則的形狀( ). A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 4.在中,已知,,,則的值是 . 5. 一船以每小時(shí)15km的速度向東航行,船在A處看到一個(gè)燈塔B在北偏

23、東,行駛4h后,船到達(dá)C處,看到這個(gè)燈塔在北偏東,這時(shí)船與燈塔的距離為 km. 課后作業(yè) 1. 隔河可以看到兩個(gè)目標(biāo),但不能到達(dá),在岸邊選取相距km的C、D兩點(diǎn),并測(cè)得∠ACB=75,∠BCD=45,∠ADC=30,∠ADB=45,A、B、C、D在同一個(gè)平面,求兩目標(biāo)A、B間的距離. 2. 某船在海面A處測(cè)得燈塔C與A相距海里,且在北偏東方向;測(cè)得燈塔B與A相距海里,且在北偏西方向. 船由向正北方向航行到D處,測(cè)得燈塔B在南偏西方向. 這時(shí)燈塔C與D相距多少海里?

24、 1.2應(yīng)用舉例—②測(cè)量高度 學(xué)習(xí)目標(biāo) 1. 能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)底部不可到達(dá)的物體高度測(cè)量的問題; 2. 測(cè)量中的有關(guān)名稱. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:在ABC中,,則ABC的形狀是怎樣? 復(fù)習(xí)2:在ABC中,、b、c分別為A、B、C的對(duì)邊,若=1:1:,求A:B:C的值. 二、新課導(dǎo)學(xué) ※ 學(xué)習(xí)探究 新知:坡度、仰角、俯角、方位角 方位角---從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平轉(zhuǎn)角 ; 坡度---沿余坡向上的方向與水平方

25、向的夾角; 仰角與俯角---視線與水平線的夾角當(dāng)視線在水平線之上時(shí),稱為仰角;當(dāng)視線在水平線之下時(shí),稱為俯角. 探究:AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測(cè)量建筑物高度AB的方法. 分析:選擇基線HG,使H、G、B三點(diǎn)共線, 要求AB,先求AE 在中,可測(cè)得角 ,關(guān)鍵求AC 在中,可測(cè)得角 ,線段 ,又有 故可求得AC ※ 典型例題 例1. 如圖,在山頂鐵塔上B處測(cè)得地面上一點(diǎn)A的俯角=54,在塔底C處測(cè)得A處的俯角=50. 已

26、知鐵塔BC部分的高為27.3 m,求出山高CD(精確到1 m) 例2. 如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測(cè)得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測(cè)得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD. 問題1: 欲求出CD,思考在哪個(gè)三角形中研究比較適合呢? 問題2: 在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長(zhǎng)? 變式:某人在山

27、頂觀察到地面上有相距2500米的A、B兩個(gè)目標(biāo),測(cè)得目標(biāo)A在南偏西57,俯角是60,測(cè)得目標(biāo)B在南偏東78,俯角是45,試求山高. 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 利用正弦定理和余弦定理來解題時(shí),要學(xué)會(huì)審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮?jiǎn)化. ※ 知識(shí)拓展 在湖面上高h(yuǎn)處,測(cè)得云之仰角為,湖中云之影的俯角為,則云高為. 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 在ABC中,下列關(guān)系中一定成立的是( ). A. B. C

28、. D. 2. 在ABC中,AB=3,BC=,AC=4,則邊AC上的高為( ). A. B. C. D. 3. D、C、B在地面同一直線上,DC=100米,從D、C兩地測(cè)得A的仰角分別為和,則A點(diǎn)離地面的高AB等于( )米. A.100 B. C.50 D.50 4. 在地面上點(diǎn),測(cè)得一塔塔頂和塔基的仰角分別是和,已知塔基高出地面,則塔身的高為_________. 5. 在ABC中,,,且三角形有兩解,則A的取值范圍是 . 課后作業(yè) 1. 為測(cè)某塔AB的高度,

29、在一幢與塔AB相距20m的樓的樓頂處測(cè)得塔頂A的仰角為30,測(cè)得塔基B的俯角為45,則塔AB的高度為多少m? 2. 在平地上有A、B兩點(diǎn),A在山的正東,B在山的東南,且在A的南25西300米的地方,在A側(cè)山頂?shù)难鼋鞘?0,求山高. 1.2應(yīng)用舉例—③測(cè)量角度 學(xué)習(xí)目標(biāo) 能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)計(jì)算角度的實(shí)際問題. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:在中,已知,,且,求. 復(fù)習(xí)2:設(shè)的內(nèi)角A,B,C的對(duì)邊分別為a,b,

30、c,且A=,,求的值. 二、新課導(dǎo)學(xué) ※ 典型例題 例1. 如圖,一艘海輪從A出發(fā),沿北偏東75的方向航行67.5 n mile后到達(dá)海島B,然后從B出發(fā),沿北偏東32的方向航行54.0 n mile后達(dá)到海島C.如果下次航行直接從A出發(fā)到達(dá)C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1,距離精確到0.01n mile) 例2. 某巡邏艇在A處發(fā)現(xiàn)北偏東45相距9海里的C處有一艘走私船,正沿南偏東75的方向以10海里/小時(shí)的速度向我海岸行駛,巡邏艇

31、立即以14海里/小時(shí)的速度沿著直線方向追去,問巡邏艇應(yīng)該沿什么方向去追?需要多少時(shí)間才追趕上該走私船? ※ 動(dòng)手試試 練1. 甲、乙兩船同時(shí)從B點(diǎn)出發(fā),甲船以每小時(shí)10(+1)km的速度向正東航行,乙船以每小時(shí)20km的速度沿南60東的方向航行,1小時(shí)后甲、乙兩船分別到達(dá)A、C兩點(diǎn),求A、C兩點(diǎn)的距離,以及在A點(diǎn)觀察C點(diǎn)的方向角. 練2. 某漁輪在A處測(cè)得在北45的C處有一魚群,離漁輪9

32、海里,并發(fā)現(xiàn)魚群正沿南75東的方向以每小時(shí)10海里的速度游去,漁輪立即以每小時(shí)14海里的速度沿著直線方向追捕,問漁輪應(yīng)沿什么方向,需幾小時(shí)才能追上魚群? 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 已知量與未知量全部集中在一個(gè)三角形中,依次利用正弦定理或余弦定理解之.; 2.已知量與未知量涉及兩個(gè)或幾個(gè)三角形,這時(shí)需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解. ※ 知識(shí)拓展 已知ABC的三邊長(zhǎng)均為有理數(shù),A=,B=,則是有理數(shù),還是無理數(shù)? 因?yàn)?,由余弦定理? 為有理數(shù), 所以為有理數(shù). 學(xué)習(xí)評(píng)價(jià)

33、 ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 從A處望B處的仰角為,從B處望A處的俯角為,則,的關(guān)系為( ). A. B.= C.+= D.+= 2. 已知兩線段,,若以、為邊作三角形,則邊所對(duì)的角A的取值范圍是( ). A. B. C. D. 3. 關(guān)于的方程有相等實(shí)根,且A、B、C是的三個(gè)內(nèi)角,則三角形的三邊滿足( ). A. B. C. D. 4. △ABC中,已知a:b:c=(+1) :(-1): ,則此三角形中最大角的度

34、數(shù)為 . 5. 在三角形中,已知:A,a,b給出下列說法: (1)若A≥90,且a≤b,則此三角形不存在 (2)若A≥90,則此三角形最多有一解 (3)若A<90,且a=bsinA,則此三角形為直角三角形,且B=90 (4)當(dāng)A<90,a

35、 2. 1.2應(yīng)用舉例—④解三角形 學(xué)習(xí)目標(biāo) 1. 能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法進(jìn)一步解決有關(guān)三角形的問題; 2. 掌握三角形的面積公式的簡(jiǎn)單推導(dǎo)和應(yīng)用; 3. 能證明三角形中的簡(jiǎn)單的恒等式. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:在ABC中 (1)若,則等于 . (2)若,,,則 _____. 復(fù)習(xí)2: 在中,,,,則高BD= ,三角形面積= . 二、新課導(dǎo)學(xué) ※ 學(xué)習(xí)探究

36、 探究:在ABC中,邊BC上的高分別記為h,那么它如何用已知邊和角表示? h=bsinC=csinB 根據(jù)以前學(xué)過的三角形面積公式S=ah, 代入可以推導(dǎo)出下面的三角形面積公式,S=absinC, 或S= , 同理S= . 新知:三角形的面積等于三角形的任意兩邊以及它們夾角的正弦之積的一半. ※ 典型例題 例1. 在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm): (1)已知a=14.8cm,c=23.5cm,B=148.5; (2)已知B=62.7,C=65.8,b

37、=3.16cm; (3)已知三邊的長(zhǎng)分別為a=41.4cm,b=27.3cm, c=38.7cm. 變式:在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測(cè)量得到這個(gè)三角形區(qū)域的三條邊長(zhǎng)分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm) 例2. 在ABC中,求證: (1) (2)++=2(bccosA+cacosB+abcosC).

38、 小結(jié):證明三角形中恒等式方法: 應(yīng)用正弦定理或余弦定理,“邊”化“角”或“角”化“邊”. ※ 動(dòng)手試試 練1. 在ABC中,已知,,,則ABC的面積是 . 練2. 在ABC中,求證: . 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 三角形面積公式: S=absinC= = . 2. 證明三角形中的簡(jiǎn)單的恒等式方法:應(yīng)用正弦定理或余弦定理,“邊”化“角”或“角”化“邊”. ※ 知識(shí)拓展 三角形面積, 這里,這

39、就是著名的海倫公式. 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 在中,,則( ). A. B. C. D. 2. 三角形兩邊之差為2,夾角的正弦值為,面積為,那么這個(gè)三角形的兩邊長(zhǎng)分別是( ). A. 3和5 B. 4和6 C. 6和8 D. 5和7 3. 在中,若,則一定是( )三角形. A. 等腰 B. 直角 C. 等邊 D. 等腰直角 4. 三邊長(zhǎng)分別為,它的較大銳角的平分線分三角形的面積比是 . 5. 已知三角形的三邊的長(zhǎng)分別為,,,則ABC的面積是

40、 . 課后作業(yè) 2. 已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S. 2. 在△ABC中,若 ,試判斷△ABC的形狀. 1.2應(yīng)用舉例(練習(xí)) 學(xué)習(xí)目標(biāo) 1.能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量的實(shí)際問題; 2.三角形的面積及有關(guān)恒等式. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1:解三角形應(yīng)用題的關(guān)鍵:將實(shí)際問題轉(zhuǎn)化為解三角形問題來解決. 復(fù)習(xí)2:基本解題思路是: ①分析此題屬于哪種類型(距離、高度、角度

41、); ②依題意畫出示意圖,把已知量和未知量標(biāo)在圖中; ③確定用哪個(gè)定理轉(zhuǎn)化,哪個(gè)定理求解; ④進(jìn)行作答,并注意近似計(jì)算的要求. 二、新課導(dǎo)學(xué) ※ 典型例題 例1. 某觀測(cè)站C在目標(biāo)A的南偏西方向,從A出發(fā)有一條南偏東走向的公路,在C處測(cè)得與C相距31的公路上有一人正沿著此公路向A走去,走20到達(dá)D,此時(shí)測(cè)得CD距離為21,求此人在D處距A還有多遠(yuǎn)? 例2. 在某點(diǎn)B處測(cè)得建筑物AE的頂端A的仰角為,沿BE方向前進(jìn)30m,至點(diǎn)C處測(cè)得頂端A的仰角為2,再繼續(xù)前進(jìn)10

42、m至D點(diǎn),測(cè)得頂端A的仰角為4,求的大小和建筑物AE的高. 600 2 1 D C B A A D B C 例3. 如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60,AC=7,AD=6,S△ADC=,求AB的長(zhǎng). ※ 動(dòng)手試試 練1. 為測(cè)某塔AB的高度,在一幢與塔AB相距20m的樓的樓頂處測(cè)得塔頂A的仰角為30,測(cè)得塔基B的俯角為45,則塔AB的高度為多少m?

43、 練2. 兩燈塔A、B與海洋觀察站C的距離都等于a km,燈塔A在觀察站C的北偏東30,燈塔B在觀察站C南偏東60,則A、B之間的距離為多少? 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 解三角形應(yīng)用題的基本思路,方法; 2.應(yīng)用舉例中測(cè)量問題的強(qiáng)化. ※ 知識(shí)拓展 秦九韶“三斜求積”公式: 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 某人向正東方向走后,向右轉(zhuǎn),然后朝新方向走,結(jié)果他離出發(fā)點(diǎn)恰好,則等

44、于( ). A. B. C.或 D.3 2.在200米的山上頂,測(cè)得山下一塔頂與塔底的俯角分別為,則塔高為( )米. A. B. C. D. 3. 在ABC中,,,面積為,那么的長(zhǎng)度為( ). A. B. C. D. 4. 從200米高的山頂A處測(cè)得地面上某兩個(gè)景點(diǎn)B、C的俯角分別是30和45,且∠BAC=45,則這兩個(gè)景點(diǎn)B、C之間的距離 . 5. 一貨輪航行到M處,測(cè)得燈塔S在貨輪的北偏東15相距20里處,隨后貨輪按北偏西30的方向航行,半小時(shí)后,又測(cè)得燈塔在貨輪的北偏東,則貨輪的速度

45、 . 課后作業(yè) 1. 3.5米長(zhǎng)的棒斜靠在石堤旁,棒的一端在離堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤對(duì)地面的傾斜角. 2. 已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量m=(),n=(cosA,sinA). 若m⊥n,且acosB+bcosA=csinC,求角B. 第一章 解三角形(復(fù)習(xí)) 學(xué)習(xí)目標(biāo) 能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些有關(guān)測(cè)量距離的實(shí)際問題. 學(xué)習(xí)過程 一、課前準(zhǔn)備 復(fù)習(xí)1: 正弦定理

46、和余弦定理 (1)用正弦定理: ①知兩角及一邊解三角形; ②知兩邊及其中一邊所對(duì)的角解三角形(要討論解的個(gè)數(shù)). (2)用余弦定理: ①知三邊求三角; ②知道兩邊及這兩邊的夾角解三角形. 復(fù)習(xí)2:應(yīng)用舉例 ① 距離問題,②高度問題, ③ 角度問題,④計(jì)算問題. 練:有一長(zhǎng)為2公里的斜坡,它的傾斜角為30,現(xiàn)要將傾斜角改為45,且高度不變. 則斜坡長(zhǎng)變?yōu)開__ . 二、新課導(dǎo)學(xué) ※ 典型例題 例1. 在中,且最長(zhǎng)邊為1,,,求角C的大小及△ABC最短邊的長(zhǎng).

47、 例2. 如圖,當(dāng)甲船位于A處時(shí)獲悉,在其正東方向相距20海里的B處有一艘漁船遇險(xiǎn)等待營救.甲船立即前往救援,同時(shí)把消息告知在甲船的南偏西30,相距10海里C處的乙船,試問乙船應(yīng)朝北偏東多少度的方向沿直線前往B處救援(角度精確到1)? 北 20 10 A B ? ?C 例3. 在ABC中,設(shè) 求A的值. ※ 動(dòng)手試試 練1. 如圖,某海輪以60 n mile/h 的速度航行,在A點(diǎn)

48、測(cè)得海面上油井P在南偏東60,向北航行40 min后到達(dá)B點(diǎn),測(cè)得油井P在南偏東30,海輪改為北偏東60的航向再行駛80 min到達(dá)C點(diǎn),求P、C間的距離. 北 練2. 在△ABC中,b=10,A=30,問a取何值時(shí),此三角形有一個(gè)解??jī)蓚€(gè)解?無解? 三、總結(jié)提升 ※ 學(xué)習(xí)小結(jié) 1. 應(yīng)用正、余弦定理解三角形; 2. 利用正、余弦定理解決實(shí)際問題(測(cè)量距離、高度、角度等); 3.在現(xiàn)實(shí)生活中靈活運(yùn)用正、余弦定理解決問題. (邊角轉(zhuǎn)化). ※

49、 知識(shí)拓展 設(shè)在中,已知三邊,,,那么用已知邊表示外接圓半徑R的公式是 學(xué)習(xí)評(píng)價(jià) ※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿分:10分)計(jì)分: 1. 已知△ABC中,AB=6,∠A=30,∠B=,則△ABC的面積為( ).  A.9 B.18 C.9 D.18 2.在△ABC中,若,則∠C=( ). A. 60 B. 90 C.150 D.120 3. 在ABC中,,,A=30,則B的解的個(gè)數(shù)是( ). A.0個(gè) B.1個(gè) C.2個(gè) D.不確定的 4. 在△ABC中,,,,則_______ 5. 在ABC中,、b、c分別為A、B、C的對(duì)邊,若,則A=___ ____. 課后作業(yè) 1. 已知、、為的三內(nèi)角,且其對(duì)邊分別為、、,若. (1)求; (2)若,求的面積. 2. 在△ABC中,分別為角A、B、C的對(duì)邊,,=3, △ABC的面積為6, (1)求角A的正弦值; (2)求邊b、c. 19

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔

相關(guān)搜索

關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!