2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 4-28幾何證明選講同步練習(xí) 理 人教版.doc
《2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 4-28幾何證明選講同步練習(xí) 理 人教版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 4-28幾何證明選講同步練習(xí) 理 人教版.doc(8頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 4-28幾何證明選講同步練習(xí) 理 人教版 班級(jí)________ 姓名_______ 時(shí)間:45分鐘 分值:100分 總得分_______ 一、填空題(每小題6分,共30分) 1.(xx陜西)如圖,∠B=∠D,AE⊥BC,∠ACD=90,且AB=6,AC=4,AD=12,則BE=________. 解析:由∠B=∠D,AE⊥BC,知△ABE∽△ADC, ∴=,∴AE=AC==2,∴BE===4. 答案:4 2.(xx湖南)如圖,A、E是半圓周上的兩個(gè)三等分點(diǎn),直線BC=4,AD⊥BC,垂足為D,BE與AD相交于點(diǎn)F,則AF的長(zhǎng)為________. 解析: 如圖所示,∵A、E是半圓周上兩個(gè)三等分點(diǎn), ∴△ABO和△AOE均為正三角形. ∴AE=BO=BC=2.∵AD⊥BC, ∴AD==,BD=1. 又∠BOA=∠OAE=60,∴AE∥BD. ∴△BDF∽△EAF,∴==. ∴AF=2FD,∴3AF=2(FD+AF)=2AD=2, ∴AF=. 答案: 3.(xx深圳卷)如圖,A,B是兩圓的交點(diǎn),AC是小圓的直徑,D和E分別是CA和CB的延長(zhǎng)線與大圓的交點(diǎn),已知AC=4,BE=10,且BC=AD,則DE=________. 解析:連接AB,設(shè)BC=AD=x,結(jié)合圖形可得 △CAB與△CED相似,于是=. 即=?x=2. 又因?yàn)锳C是小圓的直徑,所以∠CBA=90, 由于∠CDE=∠CBA,所以∠CDE=90. 在直角三角形CDE中,DE===6. 答案:6 4.(xx佛山卷)如圖,過圓外一點(diǎn)P作⊙O的割線PBA與切線PE,E為切點(diǎn),連接AE、BE,∠APE的平分線分別與AE、BE相交于點(diǎn)C、D,若∠AEB=30,則∠PCE=________. 解析:由切割線性質(zhì)得:PE2=PBPA,即=, ∴△PBE∽△PEA,∴∠PEB=∠PAE,又△PEA的內(nèi)角和為2(∠CPA+∠PAE)+30=180,所以∠CPA+∠PAE=75,即∠PCE=75. 答案:75 5.如圖,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點(diǎn)E,F(xiàn)分別為線段AB,AD的中點(diǎn),則EF=________. 分析:本題考查勾股定理及三角形中位線的性質(zhì). 解析:連接BD、DE,由題意可知DE⊥AB,DE=a,BC=DE=a,∴BD= =a,∴EF=BD=. 答案: 二、解答題(每小題10分,共70分) 6.如圖,已知△ABC的兩條角平分線AD和CE相交于H,∠B=60,F(xiàn)在AC上,且AE=AF. (1)求證:B,D,H,E四點(diǎn)共圓; (2)求證:CE平分∠DEF. 證明:(1)在△ABC中,因?yàn)椤螧=60,所以∠BAC+∠BCA=120.因?yàn)锳D,CE是角平分線,所以∠HAC+∠HCA=60,故∠AHC=120.于是∠EHD=∠AHC=120.因?yàn)椤螮BD+∠EHD=180,所以B,D,H,E四點(diǎn)共圓. (2)連接BH,則BH為∠ABC的平分線,所以∠HBD=30.由(1)知B,D,H,E四點(diǎn)共圓, 所以∠CED=∠HBD=30. 又∠AHE=∠EBD=60,由已知可得EF⊥AD, 可得∠CEF=30, 所以CE平分∠DEF. 7.如圖所示,⊙O為△ABC的外接圓,且AB=AC,過點(diǎn)A的直線交⊙O于D,交BC的延長(zhǎng)線于F,DE是BD的延長(zhǎng)線,連接CD. (1)求證:∠EDF=∠CDF; (2)求證:AB2=AFAD. 證明: (1)∵AB=AC, ∴∠ABC=∠ACB.∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠CDF=∠ABC.又∠ADB與∠EDF是對(duì)頂角, ∴∠ADB=∠EDF.又∠ADB=∠ACB, ∴∠EDF=∠CDF. (2)由(1)知∠ADB=∠ABC.又∵∠BAD=∠FAB, ∴△ADB∽△ABF,∴=,∴AB2=AFAD. 8.(xx遼寧)如圖,A,B,C,D四點(diǎn)在同一圓上,AD的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED. (1)證明:CD∥AB; (2)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓. 證明:(1)因?yàn)镋C=ED,所以∠EDC=∠ECD. 因?yàn)锳,B,C,D四點(diǎn)在同一圓上,所以∠EDC=∠EBA, 故∠ECD=∠EBA. 所以CD∥AB. (2)由(1)知,AE=BE,因?yàn)镋F=EG,故∠EFD=∠EGC, 從而∠FED=∠GEC. 連接AF,BG,則△EFA≌△EGB,故∠FAE=∠GBE. 又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA, 所以∠AFG+∠GBA=180, 故A,B,G,F(xiàn)四點(diǎn)共圓. 9.已知,如圖,AB是⊙O的直徑,G為AB延長(zhǎng)線上的一點(diǎn),GCD是⊙O的割線,過點(diǎn)G作AB的垂線,交直線AC于點(diǎn)E,交AD于點(diǎn)F,過G作⊙O的切線,切點(diǎn)為H.求證: (1)C,D,F(xiàn),E四點(diǎn)共圓; (2)GH2=GEGF. 證明:(1)連接CB,∵∠ACB=90,AG⊥FG,又∵∠EAG=∠BAC, ∴∠ABC=∠AEG.∵∠ADC=180-∠ABC=180-∠AEG=∠CEF,∴∠ADC+∠FDC=∠CEF+∠FDC=180, ∴C,D,F(xiàn),E四點(diǎn)共圓. (2)由C,D,F(xiàn),E四點(diǎn)共圓,知∠GCE=∠AFE,∠GEC=∠GDF,∴△GCE∽△GFD,故=,即GCGD=GEGF.∵GH為圓的切線,GCD為割線, ∴GH2=GCGD,∴GH2=GEGF. 10.(xx課標(biāo))如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根. (1)證明:C,B,D,E四點(diǎn)共圓; (2)若∠A=90,且m=4,n=6,求C,B,D,E所在圓的半徑. 解:(1)證明:連接DE,根據(jù)題意在△ADE和△ACB中, ADAB=mn=AEAC, 即=.又∠DAE=∠CAB,從而△ADE∽△ACB. 因此∠ADE=∠ACB. 所以C,B,D,E四點(diǎn)共圓. (2)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12. 取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.因?yàn)镃,B,D,E四點(diǎn)共圓,所以C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH. 由于∠A=90,故GH∥AB,HF∥AC.從而HF=AG=5,DF=(12-2)=5. 故C,B,D,E四點(diǎn)所在圓的半徑為5. 11.(xx哈師大附中、東北師大附中、遼寧省實(shí)驗(yàn)中學(xué)第一次聯(lián)考)已知四邊形PQRS是圓內(nèi)接四邊形,∠PSR=90,過點(diǎn)Q作PR、PS的垂線,垂足分別為點(diǎn)H、K. (1)求證:Q、H、K、P四點(diǎn)共圓; (2)求證:QT=TS. 證明:(1)∵∠PHQ=∠PKQ=90, ∴Q、H、K、P四點(diǎn)共圓. (2)∵Q、H、K、P四點(diǎn)共圓,∴∠HKS=∠HQP, ① ∵∠PSR=90,∴PR為圓的直徑,∴∠PQR=90,∠QRH=∠HQP, ② 而∠QSP=∠QRH, ③ 由①②③得,∠QSP=∠HKS,TS=TK, 又∠SKQ=90,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS. 12.(xx河南省教學(xué)質(zhì)量調(diào)研)如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB、FC. (1)求證:FB=FC; (2)求證:FB2=FAFD; (3)若AB是△ABC外接圓的直徑,∠EAC=120,BC=6 cm,求AD的長(zhǎng). 解:(1)證明:∵AD平分∠EAC. ∴∠EAD=∠DAC. ∵四邊形AFBC內(nèi)接于圓, ∴∠DAC=∠FBC. ∵∠EAD=∠FAB=∠FCB,∴∠FBC=∠FCB, ∴FB=FC. (2)證明:∵∠FAB=∠FCB=∠FBC,∠AFB=∠BFD, ∴△FBA∽△FDB,∴=, ∴FB2=FAFD. (3)∵AB是圓的直徑,∴∠ACB=90. ∵∠EAC=120,∴∠DAC=∠EAC=60,∠BAC=60. ∴∠D=30. ∵BC=6 cm,∴AC=2cm,∴AD=2AC=4cm.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)二輪復(fù)習(xí) 4-28幾何證明選講同步練習(xí) 人教版 2019 2020 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 28 幾何 證明 同步 練習(xí)
鏈接地址:http://kudomayuko.com/p-2437805.html