2019-2020年高中數(shù)學(xué)3.1回歸分析(一)教案北師大選修2-3.doc
《2019-2020年高中數(shù)學(xué)3.1回歸分析(一)教案北師大選修2-3.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)3.1回歸分析(一)教案北師大選修2-3.doc(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)3.1回歸分析(一)教案北師大選修2-3 教學(xué)目標(biāo) (1)通過實例引入線性回歸模型,感受產(chǎn)生隨機(jī)誤差的原因; (2)通過對回歸模型的合理性等問題的研究,滲透線性回歸分析的思想和方法; (3)能求出簡單實際問題的線性回歸方程. 教學(xué)重點,難點 線性回歸模型的建立和線性回歸系數(shù)的最佳估計值的探求方法. 教學(xué)過程 一.問題情境 1. 情境:對一作直線運動的質(zhì)點的運動過程觀測了次,得到如下表所示的數(shù)據(jù),試估計當(dāng)x=9時的位置y的值. 時刻/s 位置觀測值/cm 根據(jù)《數(shù)學(xué)(必修)》中的有關(guān)內(nèi)容,解決這個問題的方法是: 先作散點圖,如下圖所示: 從散點圖中可以看出,樣本點呈直線趨勢,時間與位置觀測值y之間有著較好的線性關(guān)系.因此可以用線性回歸方程來刻畫它們之間的關(guān)系.根據(jù)線性回歸的系數(shù)公式, 可以得到線性回歸方為,所以當(dāng)時,由線性回歸方程可以估計其位置值為 2.問題:在時刻時,質(zhì)點的運動位置一定是嗎? 二.學(xué)生活動 思考,討論:這些點并不都在同一條直線上,上述直線并不能精確地反映與之間的關(guān)系,的值不能由完全確定,它們之間是統(tǒng)計相關(guān)關(guān)系,的實際值與估計值之間存在著誤差. 三.建構(gòu)數(shù)學(xué) 1.線性回歸模型的定義: 我們將用于估計值的線性函數(shù)作為確定性函數(shù); 的實際值與估計值之間的誤差記為,稱之為隨機(jī)誤差; 將稱為線性回歸模型. 說明:(1)產(chǎn)生隨機(jī)誤差的主要原因有: ①所用的確定性函數(shù)不恰當(dāng)引起的誤差; ②忽略了某些因素的影響; ③存在觀測誤差. (2)對于線性回歸模型,我們應(yīng)該考慮下面兩個問題: ①模型是否合理(這個問題在下一節(jié)課解決); ②在模型合理的情況下,如何估計,? 2.探求線性回歸系數(shù)的最佳估計值: 對于問題②,設(shè)有對觀測數(shù)據(jù),根據(jù)線性回歸模型,對于每一個,對應(yīng)的隨機(jī)誤差項,我們希望總誤差越小越好,即要使越小越好.所以,只要求出使取得最小值時的,值作為,的估計值,記為,. 注:這里的就是擬合直線上的點到點的距離. 用什么方法求,? 回憶《數(shù)學(xué)3(必修)》“2.4線性回歸方程”P71“熱茶問題”中求,的方法:最小二乘法. 利用最小二乘法可以得到,的計算公式為 , 其中, 由此得到的直線就稱為這對數(shù)據(jù)的回歸直線,此直線方程即為線性回歸方程.其中,分別為,的估計值,稱為回歸截距,稱為回歸系數(shù),稱為回歸值. 在前面質(zhì)點運動的線性回歸方程中,,. 3. 線性回歸方程中,的意義是:以為基數(shù),每增加1個單位,相應(yīng)地平均增加個單位; 4. 化歸思想(轉(zhuǎn)化思想) 在實際問題中,有時兩個變量之間的關(guān)系并不是線性關(guān)系,這就需要我們根據(jù)專業(yè)知識或散點圖,對某些特殊的非線性關(guān)系,選擇適當(dāng)?shù)淖兞看鷵Q,把非線性方程轉(zhuǎn)化為線性回歸方程,從而確定未知參數(shù).下面列舉出一些常見的曲線方程,并給出相應(yīng)的化為線性回歸方程的換元公式. (1),令,,則有. (2),令,,,則有. (3),令,,,則有. (4),令,,,則有. (5),令,,則有. 四.?dāng)?shù)學(xué)運用 1.例題: 例1.下表給出了我國從年至年人口數(shù)據(jù)資料,試根據(jù)表中數(shù)據(jù)估計我國年的人口數(shù). 年份 人口數(shù)/百萬 解:為了簡化數(shù)據(jù),先將年份減去,并將所得值用表示,對應(yīng)人口數(shù)用表示,得到下面的數(shù)據(jù)表: 作出個點構(gòu)成的散點圖, 由圖可知,這些點在一條直線附近,可以用線性回歸模型來表示它們之間的關(guān)系. 根據(jù)公式(1)可得 這里的分別為的估 計值,因此線性回歸方程 為 由于年對應(yīng)的,代入線性回歸方程可得(百萬),即年的人口總數(shù)估計為13.23億. 例2. 某地區(qū)對本地的企業(yè)進(jìn)行了一次抽樣調(diào)查,下表是這次抽查中所得到的各企業(yè)的人均資本(萬元)與人均產(chǎn)出(萬元)的數(shù)據(jù): 人均 資本 /萬元 人均 產(chǎn)出 /萬元 (1)設(shè)與之間具有近似關(guān)系(為常數(shù)),試根據(jù)表中數(shù)據(jù)估計和的值; (2)估計企業(yè)人均資本為萬元時的人均產(chǎn)出(精確到). 分析:根據(jù),所具有的關(guān)系可知,此問題不是線性回歸問題,不能直接用線性回歸方程處理.但由對數(shù)運算的性質(zhì)可知,只要對的兩邊取對數(shù),就能將其轉(zhuǎn)化為線性關(guān)系. 解(1)在的兩邊取常用對數(shù),可得,設(shè),,,則.相關(guān)數(shù)據(jù)計算如圖所示. 1 人均資本/萬元 3 4 5.5 6.5 7 8 9 10.5 11.5 14 2 人均產(chǎn)出/萬元 4.12 4.67 8.68 11.01 13.04 14.43 17.5 25.46 26.66 45.2 3 0.47712 0.60206 0.74036 0.81291 0.8451 0.90309 0.95424 1.02119 1.0607 1.14613 4 0.6149 0.66932 0.93852 1.04179 1.11528 1.15927 1.24304 1.40586 1.42586 1.65514 仿照問題情境可得,的估計值,分別為由可得,即,的估計值分別為和. (2)由(1)知.樣本數(shù)據(jù)及回歸曲線的圖形如圖(見書本 頁) 當(dāng)時,(萬元),故當(dāng)企業(yè)人均資本為萬元時,人均產(chǎn)值約為萬元. 2.練習(xí):練習(xí)第題. 五.回顧小結(jié): 1. 線性回歸模型與確定性函數(shù)相比,它表示與之間是統(tǒng)計相關(guān)關(guān)系(非確定性關(guān)系)其中的隨機(jī)誤差提供了選擇模型的準(zhǔn)則以及在模型合理的情況下探求最佳估計值,的工具; 2. 線性回歸方程中,的意義是:以為基數(shù),每增加1個單位,相應(yīng)地平均增加個單位; 3.求線性回歸方程的基本步驟. 六.課外作業(yè):第題. 回歸分析(2) 教學(xué)目標(biāo) (1)通過實例了解相關(guān)系數(shù)的概念和性質(zhì),感受相關(guān)性檢驗的作用; (2)能對相關(guān)系數(shù)進(jìn)行顯著性檢驗,并解決簡單的回歸分析問題; (3)進(jìn)一步了解回歸的基本思想、方法及初步應(yīng)用. 教學(xué)重點,難點 相關(guān)系數(shù)的性質(zhì)及其顯著性檢驗的基本思想、操作步驟. 教學(xué)過程 一.問題情境 1.情境:下面是一組數(shù)據(jù)的散點圖,若求出相應(yīng)的線性回歸方程,求出的線性回歸方程可以用作預(yù)測和估計嗎? 2.問題:思考、討論:求得的線性回歸方程是否有實際意義. 二.學(xué)生活動 對任意給定的樣本數(shù)據(jù),由計算公式都可以求出相應(yīng)的線性回歸方程,但求得的線性回歸方程未必有實際意義.左圖中的散點明顯不在一條直線附近,不能進(jìn)行線性擬合,求得的線性回歸方程是沒有實際意義的;右圖中的散點基本上在一條直線附近,我們可以粗略地估計兩個變量間有線性相關(guān)關(guān)系,但它們線性相關(guān)的程度如何,如何較為精確地刻畫線性相關(guān)關(guān)系呢? 這就是上節(jié)課提到的問題①,即模型的合理性問題.為了回答這個問題,我們需要對變量與的線性相關(guān)性進(jìn)行檢驗(簡稱相關(guān)性檢驗). 三.建構(gòu)數(shù)學(xué) 1.相關(guān)系數(shù)的計算公式: 對于,隨機(jī)取到的對數(shù)據(jù),樣本相關(guān)系數(shù)的計算公式為 . 2.相關(guān)系數(shù)的性質(zhì): (1); (2)越接近與1,,的線性相關(guān)程度越強; (3)越接近與0,,的線性相關(guān)程度越弱. 可見,一條回歸直線有多大的預(yù)測功能,和變量間的相關(guān)系數(shù)密切相關(guān). 3.對相關(guān)系數(shù)進(jìn)行顯著性檢驗的步驟: 相關(guān)系數(shù)的絕對值與1接近到什么程度才表明利用線性回歸模型比較合理呢?這需要對相關(guān)系數(shù)進(jìn)行顯著性檢驗.對此,在統(tǒng)計上有明確的檢驗方法,基本步驟是: (1)提出統(tǒng)計假設(shè):變量,不具有線性相關(guān)關(guān)系; (2)如果以的把握作出推斷,那么可以根據(jù)與(是樣本容量)在附錄(教材P111)中查出一個的臨界值(其中稱為檢驗水平); (3)計算樣本相關(guān)系數(shù); (4)作出統(tǒng)計推斷:若,則否定,表明有的把握認(rèn)為變量與之間具有線性相關(guān)關(guān)系;若,則沒有理由拒絕,即就目前數(shù)據(jù)而言,沒有充分理由認(rèn)為變量與之間具有線性相關(guān)關(guān)系. 說明:1.對相關(guān)系數(shù)進(jìn)行顯著性檢驗,一般取檢驗水平,即可靠程度為. 2.這里的指的是線性相關(guān)系數(shù),的絕對值很小,只是說明線性相關(guān)程度低,不一定不相關(guān),可能是非線性相關(guān)的某種關(guān)系. 3.這里的是對抽樣數(shù)據(jù)而言的.有時即使,兩者也不一定是線性相關(guān)的.故在統(tǒng)計分析時,不能就數(shù)據(jù)論數(shù)據(jù),要結(jié)合實際情況進(jìn)行合理解釋. 4.對于上節(jié)課的例1,可按下面的過程進(jìn)行檢驗: (1)作統(tǒng)計假設(shè):與不具有線性相關(guān)關(guān)系; (2)由檢驗水平與在附錄中查得; (3)根據(jù)公式得相關(guān)系數(shù); (4)因為,即,所以有﹪的把握認(rèn)為與之間具有線性相關(guān)關(guān)系,線性回歸方程為是有意義的. 四.?dāng)?shù)學(xué)運用 1.例題: 例1.下表是隨機(jī)抽取的對母女的身高數(shù)據(jù),試根據(jù)這些數(shù)據(jù)探討與之間的關(guān)系. 母親身高 女兒身高 解:所給數(shù)據(jù)的散點圖如圖所示:由圖可以看出,這些點在一條直線附近, 因為,, , , , 所以, 由檢驗水平及,在附錄中查得,因為,所以可以認(rèn)為與之間具有較強的線性相關(guān)關(guān)系.線性回歸模型中的估計值分別為 , 故對的線性回歸方程為. 例2.要分析學(xué)生高中入學(xué)的數(shù)學(xué)成績對高一年級數(shù)學(xué)學(xué)習(xí)的影響,在高一年級學(xué)生中隨機(jī)抽取名學(xué)生,分析他們?nèi)雽W(xué)的數(shù)學(xué)成績和高一年級期末數(shù)學(xué)考試成績?nèi)缦卤恚? 學(xué)生編號 入學(xué)成績 高一期末成績 (1)計算入學(xué)成績與高一期末成績的相關(guān)系數(shù); (2)如果與之間具有線性相關(guān)關(guān)系,求線性回歸方程; (3)若某學(xué)生入學(xué)數(shù)學(xué)成績?yōu)榉郑嚬烙嬎咭黄谀?shù)學(xué)考試成績. 解:(1)因為,, ,, . 因此求得相關(guān)系數(shù)為. 結(jié)果說明這兩組數(shù)據(jù)的相關(guān)程度是比較高的; 小結(jié)解決這類問題的解題步驟: (1)作出散點圖,直觀判斷散點是否在一條直線附近; (2)求相關(guān)系數(shù); (3)由檢驗水平和的值在附錄中查出臨界值,判斷與是否具有較強的線性相關(guān)關(guān)系; (4)計算,,寫出線性回歸方程. 2.練習(xí):練習(xí)第題. 五.回顧小結(jié): 1.相關(guān)系數(shù)的計算公式與回歸系數(shù)計算公式的比較; 2.相關(guān)系數(shù)的性質(zhì); 3.探討相關(guān)關(guān)系的基本步驟. 六.課外作業(yè):習(xí)題3.2第題.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019 2020 年高 數(shù)學(xué) 3.1 回歸 分析 教案 北師大 選修
鏈接地址:http://kudomayuko.com/p-2570903.html