2019-2020年高中數(shù)學(xué)《平面向量應(yīng)用舉例》教案11 新人教A版必修4.doc
《2019-2020年高中數(shù)學(xué)《平面向量應(yīng)用舉例》教案11 新人教A版必修4.doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高中數(shù)學(xué)《平面向量應(yīng)用舉例》教案11 新人教A版必修4.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學(xué)《平面向量應(yīng)用舉例》教案11 新人教A版必修4 教學(xué)目的: 1.通過(guò)平行四邊形這個(gè)幾何模型,歸納總結(jié)出用向量方法解決平面幾何的問(wèn)題的”三步曲”; 2.明確平面幾何圖形中的有關(guān)性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角等可以由向量的線(xiàn)性運(yùn)算及數(shù)量積表示.; 3.讓學(xué)生深刻理解向量在處理平面幾何問(wèn)題中的優(yōu)越性. 教學(xué)重點(diǎn):用向量方法解決實(shí)際問(wèn)題的基本方法:向量法解決幾何問(wèn)題的“三步曲”. 教學(xué)難點(diǎn):如何將幾何等實(shí)際問(wèn)題化歸為向量問(wèn)題. 教學(xué)過(guò)程: 一、復(fù)習(xí)引入: 1. 向量平行與垂直的判定: 2. 平面內(nèi)兩點(diǎn)間的距離公式: 求模: 3. 夾角公式cosq = 所代表的幾何特征,所以,向量在幾何中有非常重要的應(yīng)用。 二、講解新課: 例1. 已知AC為⊙O的一條直徑,∠ABC為圓周角.求證:∠ABC=90o. 證明:設(shè) 相應(yīng)練習(xí):證明勾股定理、菱形的對(duì)角線(xiàn)相互垂直。 例2. 如圖,AD,BE,CF是△ABC的三條高.求證: AD,BE,CF相交于一點(diǎn). 例3. 平行四邊形是表示向量加法與減法的幾何模型.如圖, 你能發(fā)現(xiàn)平行四邊形對(duì)角線(xiàn)的長(zhǎng)度與兩條鄰邊長(zhǎng)度之間的關(guān)系嗎? 思考1: 如果不用向量方法,你能證明上述結(jié)論嗎? 思考2: 運(yùn)用向量方法解決平面幾何問(wèn)題可以分哪幾個(gè)步驟? 運(yùn)用向量方法解決平面幾何問(wèn)題可以分哪幾個(gè)步驟? “三步曲”: (1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題; (2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題; (3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系. 例4.如圖,□ ABCD中,點(diǎn)E、F分別是AD、DC邊的中點(diǎn),BE、 BF分別與AC交于R、T兩點(diǎn),你能發(fā)現(xiàn)AR、RT、TC之間的關(guān)系嗎? 課堂小結(jié) 用向量方法解決平面幾何的“三步曲”: (1)建立平面幾何與向量的聯(lián)系,用向量表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題; (2)通過(guò)向量運(yùn)算,研究幾何元素之間的關(guān)系,如距離、夾角等問(wèn)題; (3)把運(yùn)算結(jié)果“翻譯”成幾何關(guān)系. 課后作業(yè) 1. 閱讀教材P.109到P.111; 2. P108 B組第4、5題 2.5.2向量在物理中的應(yīng)用舉例 教學(xué)目的: 1.通過(guò)力的合成與分解模型、速度的合成與分解模型,掌握利用向量方法研究物理中相關(guān)問(wèn)題 的步驟,明了向量在物理中應(yīng)用的基本題型,進(jìn)一步加深對(duì)所學(xué)向量的概念和向量運(yùn)算的認(rèn)識(shí); 2.通過(guò)對(duì)具體問(wèn)題的探究解決,進(jìn)一步培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),提高應(yīng)用數(shù)學(xué)的能力,體會(huì) 數(shù)學(xué)在現(xiàn)實(shí)生活中的作用. 教學(xué)重點(diǎn):運(yùn)用向量的有關(guān)知識(shí)對(duì)物理中的力的作用、速度分解進(jìn)行相關(guān)分析來(lái)計(jì)算. 教學(xué)難點(diǎn):將物理中有關(guān)矢量的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)中向量的問(wèn)題. 教學(xué)過(guò)程: 一、引入: 向量概念源于物理中的矢量,物理中的力、位移、速度等都是向量,功是向量的數(shù)量積,從而使得向量與物理學(xué)建立了有機(jī)的內(nèi)在聯(lián)系,物理中具有矢量意義的問(wèn)題也可以轉(zhuǎn)化為向量問(wèn)題來(lái)解決.因此,在實(shí)際問(wèn)題中,如何運(yùn)用向量方法分析和解決物理問(wèn)題,又是一個(gè)值得探討的課題. 二、講解新課: 例1. 在日常生活中,你是否有這樣的經(jīng)驗(yàn):兩個(gè)人共提一個(gè)旅行包,夾角越大越費(fèi)力;在單杠上做引體向上運(yùn)動(dòng),兩臂的夾角越小越省力. 你能從數(shù)學(xué)的角度解釋這種形象嗎? 探究1: (1)q為何值時(shí),||最小,最小值是多少? (2)| |能等于||嗎?為什么? 探究2: 你能總結(jié)用向量解決物理問(wèn)題的一般步驟嗎? (1)問(wèn)題的轉(zhuǎn)化:把物理問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題; (2)模型的建立:建立以向量為主體的數(shù)學(xué)模型; (3)參數(shù)的獲得:求出數(shù)學(xué)模型的有關(guān)解——理論參數(shù)值; (4)問(wèn)題的答案:回到問(wèn)題的初始狀態(tài), 解決相關(guān)物理現(xiàn)象. 例2. 如圖,一條河的兩岸平行,河的寬度d=500 m,一艘船從A處出發(fā)到河對(duì)岸.已知船的速度||=10 km/h,水流速度||=2 km/h,問(wèn)行駛航程最短時(shí),所用時(shí)間是多少(精確到0.1 min)? 思考: 1. “行駛最短航程”是什么意思? 2. 怎樣才能使航程最短? 3.P113 B組第2題 備用例題.(xx湖南卷19)(本小題滿(mǎn)分13分) 在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀(guān)測(cè)站A.某時(shí)刻測(cè)得一艘勻速直線(xiàn)行駛的船只位于點(diǎn)A北偏東且與點(diǎn)A相距40海里的位置B,經(jīng)過(guò)40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東+(其中sin=,)且與點(diǎn)A相距10海里的位置C. (I)求該船的行駛速度(單位:海里/小時(shí)); (II)若該船不改變航行方向繼續(xù)行駛.判斷 它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由. 解: (I)如圖,AB=40,AC=10, 由于,所以cos= 由余弦定理得BC= 所以船的行駛速度為(海里/小時(shí)). (II)解法一 如圖所示,以A為原點(diǎn)建立平面直角坐標(biāo)系, 設(shè)點(diǎn)B、C的坐標(biāo)分別是B(x1,y2), C(x1,y2), BC與x軸的交點(diǎn)為D. 由題設(shè)有,x1=y1= AB=40, x2=ACcos, y2=ACsin 所以過(guò)點(diǎn)B、C的直線(xiàn)l的斜率k=,直線(xiàn)l的方程為y=2x-40. 又點(diǎn)E(0,-55)到直線(xiàn)l的距離d= 所以船會(huì)進(jìn)入警戒水域. 解法二: 如圖所示,設(shè)直線(xiàn)AE與BC的延長(zhǎng)線(xiàn)相交于點(diǎn)Q. 在△ABC中,由余弦定理得, ==. 從而 在中,由正弦定理得, AQ= 由于A(yíng)E=55>40=AQ,所以點(diǎn)Q位于點(diǎn)A和點(diǎn)E之間,且QE=AE-AQ=15. 過(guò)點(diǎn)E作EP BC于點(diǎn)P,則EP為點(diǎn)E到直線(xiàn)BC的距離. 在Rt中,PE=QEsin = 所以船會(huì)進(jìn)入警戒水域. 三、課堂小結(jié) 1. 向量解決物理問(wèn)題的一般步驟: (1)問(wèn)題的轉(zhuǎn)化:把物理問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題; (2)模型的建立:建立以向量為主體的數(shù)學(xué)模型; (3)參數(shù)的獲得:求出數(shù)學(xué)模型的有關(guān)解——理論參數(shù)值; (4)問(wèn)題的答案:回到問(wèn)題的初始狀態(tài), 解決相關(guān)物理現(xiàn)象. 2.用向量知識(shí)解決物理問(wèn)題時(shí),要注意數(shù)形結(jié)合.一般先要作出向量示意圖,必要時(shí)可建立直角坐標(biāo)系,再通過(guò)解三角形或坐標(biāo)運(yùn)算,求有關(guān)量的值. 四、課后作業(yè) 1. 閱讀教材P.111到P.112; 2. P113 A組第3、4題- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 平面向量應(yīng)用舉例 2019-2020年高中數(shù)學(xué)平面向量應(yīng)用舉例教案11 新人教A版必修4 2019 2020 年高 數(shù)學(xué) 平面 向量 應(yīng)用 舉例 教案 11 新人 必修
鏈接地址:http://kudomayuko.com/p-2572950.html