2019-2020年高中數(shù)學 第一章解三角形2.2解三角形應用舉例第三課時教案 新人教A版必修5.doc
《2019-2020年高中數(shù)學 第一章解三角形2.2解三角形應用舉例第三課時教案 新人教A版必修5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 第一章解三角形2.2解三角形應用舉例第三課時教案 新人教A版必修5.doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 第一章解三角形2.2解三角形應用舉例第三課時教案 新人教A版必修5 授課類型:新授課 ●教學目標 知識與技能:能夠運用正弦定理、余弦定理等知識和方法解決一些有關計算角度的實際問題 過程與方法:本節(jié)課是在學習了相關內(nèi)容后的第三節(jié)課,學生已經(jīng)對解法有了基本的了解,這節(jié)課應通過綜合訓練強化學生的相應能力。除了安排課本上的例1,還針對性地選擇了既具典型性有具啟發(fā)性的2道例題,強調(diào)知識的傳授更重能力的滲透。課堂中要充分體現(xiàn)學生的主體地位,重過程,重討論,教師通過導疑、導思讓學生有效、積極、主動地參與到探究問題的過程中來,逐步讓學生自主發(fā)現(xiàn)規(guī)律,舉一反三。 情感態(tài)度與價值觀:培養(yǎng)學生提出問題、正確分析問題、獨立解決問題的能力,并在教學過程中激發(fā)學生的探索精神。 ●教學重點 能根據(jù)正弦定理、余弦定理的特點找到已知條件和所求角的關系 ●教學難點 靈活運用正弦定理和余弦定理解關于角度的問題 ●教學過程 Ⅰ.課題導入 [創(chuàng)設情境] 提問:前面我們學習了如何測量距離和高度,這些實際上都可轉化已知三角形的一些邊和角求其余邊的問題。然而在實際的航海生活中,人們又會遇到新的問題,在浩瀚無垠的海面上如何確保輪船不迷失方向,保持一定的航速和航向呢?今天我們接著探討這方面的測量問題。 Ⅱ.講授新課 [范例講解] 例1、如圖,一艘海輪從A出發(fā),沿北偏東75的方向航行67.5 n mile后到達海島B,然后從B出發(fā),沿北偏東32的方向航行54.0 n mile后達到海島C.如果下次航行直接從A出發(fā)到達C,此船應該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1,距離精確到0.01n mile) 學生看圖思考并講述解題思路 教師根據(jù)學生的回答歸納分析:首先根據(jù)三角形的內(nèi)角和定理求出AC邊所對的角ABC,即可用余弦定理算出AC邊,再根據(jù)正弦定理算出AC邊和AB邊的夾角CAB。 解:在ABC中,ABC=180- 75+ 32=137,根據(jù)余弦定理, AC= = ≈113.15 根據(jù)正弦定理, = sinCAB = = ≈0.3255, 所以 CAB =19.0, 75- CAB =56.0 答:此船應該沿北偏東56.1的方向航行,需要航行113.15n mile 例2、在某點B處測得建筑物AE的頂端A的仰角為,沿BE方向前進30m,至點C處測得頂端A的仰角為2,再繼續(xù)前進10m至D點,測得頂端A的仰角為4,求的大小和建筑物AE的高。 師:請大家根據(jù)題意畫出方位圖。 生:上臺板演方位圖(上圖) 教師先引導和鼓勵學生積極思考解題方法,讓學生動手練習,請三位同學用三種不同方法板演,然后教師補充講評。 解法一:(用正弦定理求解)由已知可得在ACD中, AC=BC=30, AD=DC=10, ADC =180-4, = 。 因為 sin4=2sin2cos2 cos2=,得 2=30 =15, 在RtADE中,AE=ADsin60=15 答:所求角為15,建筑物高度為15m 解法二:(設方程來求解)設DE= x,AE=h 在 RtACE中,(10+ x) + h=30 在 RtADE中,x+h=(10) 兩式相減,得x=5,h=15 在 RtACE中,tan2== 2=30,=15 答:所求角為15,建筑物高度為15m 解法三:(用倍角公式求解)設建筑物高為AE=8,由題意,得 BAC=, CAD=2, AC = BC =30m , AD = CD =10m 在RtACE中,sin2= --------- ① 在RtADE中,sin4=, --------- ② ②① 得 cos2=,2=30,=15,AE=ADsin60=15 答:所求角為15,建筑物高度為15m 例3、某巡邏艇在A處發(fā)現(xiàn)北偏東45相距9海里的C處有一艘走私船,正沿南偏東75的方向以10海里/小時的速度向我海岸行駛,巡邏艇立即以14海里/小時的速度沿著直線方向追去,問巡邏艇應該沿什么方向去追?需要多少時間才追趕上該走私船? 師:你能根據(jù)題意畫出方位圖?教師啟發(fā)學生做圖建立數(shù)學模型 分析:這道題的關鍵是計算出三角形的各邊,即需要引入時間這個參變量。 解:如圖,設該巡邏艇沿AB方向經(jīng)過x小時后在B處追上走私船,則CB=10x, AB=14x,AC=9, ACB=+= (14x) = 9+ (10x) -2910xcos 化簡得32x-30x-27=0,即x=,或x=-(舍去) 所以BC = 10x =15,AB =14x =21, 又因為sinBAC === BAC =38,或BAC =141(鈍角不合題意,舍去), 38+=83 答:巡邏艇應該沿北偏東83方向去追,經(jīng)過1.4小時才追趕上該走私船. 評注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個解,但作為有關現(xiàn)實生活的應用題,必須檢驗上述所求的解是否符合實際意義,從而得出實際問題的解 Ⅲ.課堂練習 課本第18頁練習 Ⅳ.課時小結 解三角形的應用題時,通常會遇到兩種情況:(1)已知量與未知量全部集中在一個三角形中,依次利用正弦定理或余弦定理解之。(2)已知量與未知量涉及兩個或幾個三角形,這時需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。 Ⅴ.課后作業(yè) 1、課本第23頁練習第9、10、11題 2、我艦在敵島A南偏西相距12海里的B處,發(fā)現(xiàn)敵艦正由島沿北偏西的方向以10海里/小時的速度航行.問我艦需以多大速度、沿什么方向航行才能用2小時追上敵艦?(角度用反三角函數(shù)表示) ●板書設計 ●授后記- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 第一章解三角形2.2解三角形應用舉例第三課時教案 新人教A版必修5 2019 2020 年高 數(shù)學 第一章 三角形 2.2 應用 舉例 第三 課時 教案 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://kudomayuko.com/p-2613499.html