畢業(yè)設(shè)計 食品切斷裝置的設(shè)計
畢業(yè)設(shè)計 食品切斷裝置的設(shè)計,畢業(yè)設(shè)計,食品切斷裝置的設(shè)計,食品,切斷,裝置,設(shè)計
寧波大紅鷹學(xué)院
畢業(yè)設(shè)計(論文)外文翻譯
所在學(xué)院: 機電學(xué)院
班 級: 08機自1班
姓 名: 沈鑫斌
學(xué) 號: 08141010119
指導(dǎo)教師: 楊光
合作導(dǎo)師:
2012年 12 月 16 日
原文:
題目Cam profile optimization for a new cam drive
Abstract A complex cam shape optimization problem is studied to optimize a unique cam mechanism for a new cam drive engine. First, the optimization problem is defined through analyzing the unique cam mechanism. Multiple design specifications are included in the optimization problem by defining the output torque of the engine as the objective function and the contact stress, radius of curvature, and pressure angle as the constraints. Second, an analytical scenario is designed to find the best ever cam profiles through manipulating the different combinations of cam profile representations and optimization methods. Two types of curve representations, including general polynomial spline and B-spline, are employed in cam profile synthesis. In addition, both a classical optimization technique and a genetic algorithm (GA) based method are applied to solve the complex optimization problem. Finally, comparative studies are performed among the initial profile and the optimal profiles to demonstrate the effectiveness of these proposed design approaches on solving the cam profile optimization problem. Results show that the best profiles are obtained from a combination of the B-spline representation and the GA-based method. In addition, compared to the initial design, the engine performance is improved greatly by the proposed optimization approaches.
Plate cam mechanism is a widely used machine component with the continuous contact motion of cam and follower, and can easily produce any functional motion of follower due to the rotation of cam. Cam mechanism has the diverse types by the combination of different shape of cam and motion of follower; plate or cylindrical cam, roller or flat-faced follower, and reciprocating or oscillating motion.
In spite of the advantages of a few number of links, simple structure, positive motion, and compact size, cam mechanisms require the accurate shape design and precise machining procedures for satisfying the mechanical requirements. Under the low leveled design and manufacturing, cam mechanisms give the heavy effects on vibration, noise, separation, and overloading to an overall system. To avoid these effects, cam mechanism must be well designed accurately and machined precisely. Actually, a hybrid CAD/CAM approach may be the best solution that the shape data from the design process are directly combined to the machining data for the manufacturing process
As an innovation of replacing the conventional crankshaft/connecting rod mechanism by cam mechanism in engine design, a new type of engine called the cam drive engine is being developed in a few places in the world. The cam drive engine has unique features over the conventional engines, among which the cam drive is the most prominent one. For cam drive, the cam profiles control the engine operation strokes by determining the timing of various intake and exhaust events. Moreover, the use of cam drive facilitates having a separate compression ratio and expansion ratio, a separation that is much more difficult to accomplish with the prevalent crankshaft/connecting rod engine design. The new type of engine is believed to have major advantages over the conventional engines, including higher power, better fuel economy, smoother operation, higher reliability, and lighter weight.
The application of the cam mechanism to cam drive engine makes the design of the cam profiles essential to the overall engine performance. However,the initial cam profiles were designed using a traditional cam design approach. For the so-called trialand-error approach, the cam profiles are first generated to meet the geometry specifications such as the specified values of displacement, velocity, and acceleration at different engine events, and then the feasibility of the generated cam profiles is checked to meet the other design specifications, including the output torque of the engine, radius of curvature, and pressure angle, etc.. Although this approach is simple in principle,its disadvantages are obvious. First, this ap-proach is not efficient. It has to be applied many times in order to achieve a satisfactory engine performance.Therefore, it results in a laborious and timeconsuming design process. Moreover, since the cam design problem involves the determination of the profiles of both intake cam and exhaust cam, the interplays of the two profiles add more complexity to the trial-and-error approach. Finally, although the result found by this approach is feasible, it is very unlikely to be optimal. Therefore, it is necessary to use an optimal design approach, in conjunction with an appropriate cam profile representation, to determine the most suitable cam profiles of both intake cam and exhaust cam in order to meet the multiple design specifications. This is the motivation of the proposed research. To this end, we first review the previous research on cam design and optimization as follows.
The cam design has changed dramatically over the past decades by taking advantage of the tremendous advance in computing devices and mathematics tools,especially the splines. The impetus for the change is the demand for cams with higher speeds, smoother operation, and better performance. The research activities on cam design can be classified into two categories according to the curve representation of cam profile: polynomial-based methods and spline-based methods.
In the review of the past studies on cam design and optimization, we address the following three aspects in this research. First, the multiple design specifications for the cam drive engine are considered in the optimization problem. We select the output torque at a specified engine speed as the objective function. In addition, the other important design specifications,including contact stress, radius of curvature, and pressure angle, are considered as the constraints in the optimization problem. The major difference of the proposed research from typical cam profile optimization is that the output torque is selected as the objective function instead of the residual vibrations. The reason is that the presence of residual vibrations is not prominent because the follower (See Fig. 1) is designed to have enough rigidity in the cam-follower mechanism. In contrast, the output torque at a specified engine speed is one of the major concerns from the engine design aspect. The choice of the output torque as the objective function provides multidisciplinary aspects to the proposed research, in which both cam design and engine design are included. Second,instead of studying only one cam in the past studies, the proposed research aims to optimize intake cam and exhaust cam simultaneously to make the cam-follower mechanism fulfill appropriately the different engine events during the whole engine cycle.The complexity of the optimization problem increases accordingly since both cams are designed in the optimization problem. Finally, to study comprehensively the optimization problem, an analytical scenario is designed to investigate how the optimization results are affected by different combinations of cam profile representations and optimization methods.
A complex cam profile optimization problem hasbeen investigated for a unique cam mechanism in a new cam drive engine. First, the optimization problem has been defined by taking into account multiple design specifications. The output torque of the engineis considered as the objective function. In addition,the other design specifications, including the contact stress, the pressure angle, and the radius of curvature,are selected as the constraints. Second, an analytical scenario has been designed to investigate how the optimization results are affected by different combinations of cam profile representations and optimization methods. To this end, two types of curve representations,
i.e., general polynomial spline and Bspline,have been used in cam profile synthesis.Moreover, both a classical optimization technique and a genetic algorithm (GA)-based method have been applied to solve the optimization problem. Finally, a series of comparative studies have been performed among the initial design and the optimal design of the cam profiles. Three sets of the optimal profiles have been generated through manipulating different combinations of the cam profile representations and the optimization methods. Results show that the best profiles are obtained from the combination of the Bspline representation and the GA-based method. The best profiles provide better results in terms of the output torque and the smoothness value, compared to the other two sets of optimal profiles. Moreover, the output torque generated by the best profiles increases by 28% compared to that generated by the initial profiles.
譯文:
題目新型凸輪輪廓優(yōu)化
摘 要: 凸輪輪廓優(yōu)化問題是對一個獨特的新型凸輪驅(qū)動引擎的優(yōu)化研究。第一,優(yōu)化問題的定義通過獨特的凸輪結(jié)構(gòu)的分析。優(yōu)化問題中的多個設(shè)計規(guī)范包括通過定義引擎輸出扭矩為目標的功能與接觸應(yīng)力,曲率半徑,和壓力角的約束。第二,分析方案旨在通過操縱凸輪輪廓線凸輪輪廓交涉找到最好的和優(yōu)化方法的不同組合。兩種類型的代表曲線,包括一般多項式的樣條曲線和B樣條,用于凸輪輪廓的合成。另外,傳統(tǒng)優(yōu)化技術(shù)和遺傳基礎(chǔ)學(xué)(GA)的一種方法都將應(yīng)用于解決復(fù)雜的優(yōu)化問題。最后,比較研究執(zhí)行初始配置文件和最優(yōu)的配置文件,以證明這些凸輪輪廓優(yōu)化問題的建議的設(shè)計方法的有效性。結(jié)果顯示,代表曲線B樣條的和和遺傳基礎(chǔ)學(xué)相組合可獲得最佳的配置文件。此外,相對于最初的設(shè)計,優(yōu)化后發(fā)動機性能大幅提高。
凸輪機構(gòu)是凸輪與從動件的持續(xù)接觸的運動是一種廣泛使用的機器組件。從動件凸輪機構(gòu)由于旋轉(zhuǎn)能容易產(chǎn)生任何功能運動。凸輪機構(gòu)具有多樣的組合,不同形狀和運動從動件凸輪:板或圓柱凸輪、滾筒或平底從動件、往復(fù)式或振蕩運動。
盡管有一些數(shù)量優(yōu)勢,結(jié)構(gòu)簡單、運動積極,以及體積小,需要準確的形成凸輪機構(gòu)設(shè)計和精密的加工程序以滿足機械的要求。在設(shè)計與制造凸輪機構(gòu)給重對一個整體的系統(tǒng)振動、噪聲、分離和超載影響。為了避免這些效應(yīng),必須精心設(shè)計凸輪機構(gòu)的準確、高加工精度。事實上,混合制造(CAD/CAM)方法可能是一個最好的解決辦法,即形成數(shù)據(jù)設(shè)計過程的數(shù)據(jù)直接結(jié)合生產(chǎn)過程的加工。
作為取代傳統(tǒng)曲軸/連接桿用凸輪發(fā)動機設(shè)計中的創(chuàng)新,在世界中的少數(shù)幾個地方正在制定一種新型的發(fā)動機凸輪驅(qū)動引擎的調(diào)用。相對傳統(tǒng)的發(fā)動機,凸輪驅(qū)動引擎具有獨特的功能,其中凸輪驅(qū)動器是最突出的一個。對于凸輪的驅(qū)動器,凸輪配置文件通過確定各種進、排氣事件的時間來控制發(fā)動機運動行程。此外,凸輪驅(qū)動器使用方便有一個單獨的壓縮比和膨脹率,就更難實現(xiàn)完成與曲軸/連接桿引擎設(shè)計的分離。這種新型發(fā)動機被認為已經(jīng)超過傳統(tǒng)的發(fā)動機,包括更高的功率、 燃油經(jīng)濟性更好、 運作暢順,更高的可靠性和重量更輕的主要優(yōu)勢。
凸輪機構(gòu)凸輪驅(qū)動發(fā)動機中的應(yīng)用使得凸輪發(fā)動機設(shè)計的整體性能顯得至關(guān)重要。但是,初始凸輪配置文件旨在運用傳統(tǒng)凸輪的設(shè)計方法。所謂的反復(fù)試驗的方法,首先生成凸輪,以滿足如位移,速度和加速度在不同的引擎事件中指定的值的幾何規(guī)格,然后生成凸輪的可行性進行檢查,以滿足設(shè)計規(guī)范,包括輸出扭矩發(fā)動機,曲率半徑和壓力角等。雖然這種方法原理簡單,但它的缺點是顯而易見的。第一,這種方法不是有效的。它已多次應(yīng)用以實現(xiàn)令人滿意的發(fā)動機性能。因此,它會導(dǎo)致一個艱苦和耗時的設(shè)計過程。此外,由于凸輪設(shè)計上的問題涉及的進氣凸輪和排氣凸輪圖譜測定,兩個相互影響的配置文件添加了反復(fù)試驗法的復(fù)雜性。最后,雖然結(jié)果發(fā)現(xiàn)這種方法是可行的,它是不太可能是最佳的。因此,它是使用優(yōu)化設(shè)計方法,配合適當?shù)耐馆嗇喞硎?,以確定最合適的進氣凸輪和排氣凸輪的凸輪,以滿足多個設(shè)計規(guī)范。這是擬議的研究目的。為此,我們首先回顧以往研究的凸輪設(shè)計和優(yōu)化如下。
凸輪設(shè)計在過去的幾十年中利用巨大的計算機設(shè)備的進步和數(shù)學(xué)工具有了急劇的改變,尤其是插值。推動這一變化主要是因為如今的需求高速度、光滑的操作和更好的性能。凸輪設(shè)計研究活動可以分為兩類,根據(jù)凸輪升程曲線表示:根據(jù)多項式方法和依據(jù)單一方法。
在回顧過去凸輪設(shè)計和優(yōu)化研究,我們的著重在這三個方面的研究。第一,多規(guī)范設(shè)計凸輪驅(qū)動引擎中考慮了優(yōu)化問題。我們選擇的輸出扭矩在一個特定目標函數(shù)為發(fā)動機轉(zhuǎn)速。此外,另一個重要設(shè)計規(guī)范,包括接觸應(yīng)力、曲率半徑的,壓力角,視為優(yōu)化問題的約束。最大的不同是提出了研究典型的凸輪輪廓優(yōu)化選擇的目標函數(shù)代為輸出轉(zhuǎn)矩替剩余的振動。原因是,殘余振動的存在并不突出,因為從動件(見圖1),是專為在凸輪機制擁有足夠的剛度。相反,從引擎設(shè)計方面主要的問題是在一個特定的輸出轉(zhuǎn)矩轉(zhuǎn)速。目標函數(shù)提供多學(xué)科方面所提出的研究為輸出轉(zhuǎn)矩的選擇,其中包括有cam設(shè)計和發(fā)動機設(shè)計。第二, 在過去的研究中不是只有一個凸輪的研究,該研究旨在優(yōu)化凸輪和排氣凸輪攝入,同時使凸輪機構(gòu)履行適當不同的發(fā)動機在整個事件的發(fā)動循環(huán)。該優(yōu)化問題的復(fù)雜性相應(yīng)增加,自從兩個凸輪的優(yōu)化設(shè)計問題。最后,綜合研究該優(yōu)化問題,設(shè)計了一種分析方案是對優(yōu)化結(jié)果進行不同的組合,影響凸輪輪廓陳述和優(yōu)化方法。
一個復(fù)雜的凸輪輪廓優(yōu)化問題一直追究一個獨特的凸輪機構(gòu)在一個新的凸輪驅(qū)動引擎。首先,該優(yōu)化問題的定義考慮多個設(shè)計規(guī)范的標準。發(fā)動機的輸出轉(zhuǎn)矩作為目標函數(shù)。此外,該另設(shè)計規(guī)范,包括接觸應(yīng)力、壓力角和曲率半徑的,選為約束條件。其次,設(shè)計了分析場景對優(yōu)化結(jié)果進行不同的組合,影響凸輪輪廓陳述和優(yōu)化方法。為此,兩種類型的曲線表現(xiàn),那就是, 一般多項式樣條函數(shù)和樣條,已用于凸輪廓線的合成。此外,無論是古典的優(yōu)化技術(shù)和基于遺傳算法(GA)的方法已經(jīng)被應(yīng)用于解決優(yōu)化問題。最后,一系列的比較研究已進行初步設(shè)計中優(yōu)化設(shè)計的凸輪輪廓。三組最優(yōu)型材產(chǎn)生不同的組合,通過操縱凸輪廓線的陳述和優(yōu)化方法。結(jié)果表明,得到了最好的剖面相結(jié)合的方法樣條描述和基于遺傳算法。最好的結(jié)果,以型材提供更好的輸出力矩和光滑的價值,比其他兩組最優(yōu)配置文件。此外,所產(chǎn)生的輸出轉(zhuǎn)矩的最佳型材增加28%相比,所產(chǎn)生的初始配置文件。
寧波大紅鷹學(xué)院
畢業(yè)設(shè)計(論文)文獻綜述
文獻綜述題目 :小型食品切割機械的設(shè)計
所在學(xué)院: 寧波大紅鷹學(xué)院
班 級: 08機自(1)班
姓 名: 沈鑫斌
學(xué) 號: 08141010119
指導(dǎo)教師: 楊光 (高級工程師)
合作導(dǎo)師:
日期: 2011 年 11 月 30
7
目錄
第一章前言 3
第二章本課題設(shè)計的切斷裝置的原理、結(jié)構(gòu)分析及設(shè)計思路 4
2.1.基本思路 4
2.2. 設(shè)計凸輪機構(gòu),一般要解決的基本問題有以下幾個方面 4
2.3.滾子半徑的確定 4
2.4.從動件平底半徑確定 4
2.5. 不完全齒輪的設(shè)計與計算 5
2.6.其他構(gòu)件設(shè)計 5
第三章總結(jié) 6
第四章參考文獻 6
食品切割機械的設(shè)計初步分析
第一章前言
食品切割機械是食品加工業(yè)常用的一種設(shè)備,它主要用于各種食品的分割或整形。小型食品切割機品種繁多,廣泛應(yīng)用于生產(chǎn)各式各樣食品的加工中心。小型食品切割機在被使用的過程中不斷的被改進與完善。目前使得小型切割機的性能趨向于高安全性,低能耗,高效率。使用食品切割機在加工中的應(yīng)用顯著提高了食品的生產(chǎn)、包裝、出口,大大降低了工人的工作強度,緩解了企業(yè)的用人緊缺這現(xiàn)狀。
隨著食品工業(yè)的發(fā)展,食品機械的研發(fā)也有新的進展。目前,國際切割包裝機械競爭日趨激烈,未來食品切割包裝機械應(yīng)配合產(chǎn)業(yè)自動化趨勢,朝著以下四個方向努力:
(1)市場日趨壟斷化:專家認為,到2005年排名前五十家企業(yè)的生產(chǎn)集中度可達到50%~60%,繼續(xù)朝規(guī)模化、集團化發(fā)展,以追求規(guī)模效益。而中小企業(yè)在目前資金、技術(shù)實力不夠雄厚的狀況下,不宜盲目引進生產(chǎn)線,可采用轉(zhuǎn)為大型機械企業(yè)提供零配件生產(chǎn)的模式。
(2)零部件生產(chǎn)專業(yè)化:國際包裝界十分重視提高食品切割包裝機械加工和整個包裝系統(tǒng)的通用能力,所以食品切割包裝機械零部件生產(chǎn)專業(yè)化是發(fā)展的必然趨勢,很多零部件不再由包裝機械廠生產(chǎn),而是由一些通用的標準件廠生產(chǎn),某些特殊的零部件由高度專業(yè)化的生產(chǎn)廠家生產(chǎn)。
(3)向智能化發(fā)展:智能化切割包裝的技術(shù),已經(jīng)在美國、法國等地投入使用。食品技術(shù)研究人員估計,未來20%到40%的食品切割包裝將會應(yīng)用智能化技術(shù)。智能化能更有效地保護食品質(zhì)量,或直接顯示食品是否新鮮,使消費者不必等到拆開包裝之后才發(fā)現(xiàn)食物是否已經(jīng)變質(zhì)。
(4)向求精求專發(fā)展:今后我國食品切割包裝機械業(yè)的發(fā)展方向是求精求專??亢唵蔚闹貜?fù),擴大生產(chǎn)數(shù)量,靠向上游、向下游延伸的方法是行不通的,我國切割包裝機械業(yè)必須走專業(yè)化生產(chǎn)的道路。要發(fā)展中高檔設(shè)備,努力提高技術(shù)含量,把產(chǎn)品做精、做細、做專、做強,靠技術(shù)進步來推動行業(yè)的發(fā)展。
第二章本課題設(shè)計的切斷裝置的原理、結(jié)構(gòu)分析及設(shè)計思路
2.1基本思路
用調(diào)節(jié)電機轉(zhuǎn)速來控制切斷點的間隔,采用間歇運動機構(gòu),讓刀片以垂直的角度與糕體接觸。該裝置刀體上下運動的頻率為每秒鐘4~5次;刀體完成一次動作的時間與停歇時間之比約為1:20。為了對流水線上的糕體進行定長分割,擬采用一套不完全齒輪機構(gòu)來實現(xiàn)刀體的間歇運動,并利用凸輪機構(gòu)來轉(zhuǎn)換運動形式。
2.2 設(shè)計凸輪機構(gòu),一般要解決的基本問題有以下幾個方面:
(1)根據(jù)凸輪工作要求合理選擇從動件的運動規(guī)律和凸輪機構(gòu)的型式。
(2)根據(jù)凸輪機構(gòu)的結(jié)構(gòu)和運動要求,合理確定凸輪機構(gòu)的基本尺寸和參數(shù),如基圓半徑Rb、從動件偏置距離e和偏置方向、擺動從動件回轉(zhuǎn)中心至凸輪中心距離L、許用壓力角[a]及鎖合方式等。
根據(jù)從動件的運動規(guī)律設(shè)計凸輪輪廓(或凹槽)曲線。
(1) 選擇合適的 凸輪和從動件材料,進行結(jié)構(gòu)設(shè)計、強度核算和繪制零件圖。
2.3滾子半徑的確定
滾子半徑不宜過大或過小。確定滾子半徑時,應(yīng)避免凸輪廓線變尖或相交,同時還應(yīng)滿足凸輪結(jié)構(gòu)和接觸強度要求。選擇滾子半徑應(yīng)滿足條件:
(1)保證從動件運動不失真,有一定接觸強度。
(2)凸輪結(jié)構(gòu)要合理
(3)滾子結(jié)構(gòu)要合理,滾子軸有足夠強度
2.4從動件平底半徑確定
從動件平底半徑可由圖解法確定。從動件平底半徑要求足夠大,以保證凸輪輪廓上任一點都能與平底相切。量出凸輪實際廓線與平底各切點至導(dǎo)路中心線與平底各切點至導(dǎo)路中心線與平底的交點的距離,平底半徑R應(yīng)比其中最長尺寸稍大些。根據(jù)切割機對所需要求加工條件的分析,刀體與凸輪機構(gòu)的連接使用了滾子從動件,進行內(nèi)部溝槽的形鎖合。參考《機構(gòu)選型與運動設(shè)計》進行對凸輪機構(gòu)的設(shè)計,確定基圓半徑Rb。
2.5 不完全齒輪的設(shè)計與計算
不完全漸開線齒輪機構(gòu)能將主動輪的等速連續(xù)轉(zhuǎn)動轉(zhuǎn)換為從動輪的間歇傳動。其動停時間比不受機構(gòu)結(jié)構(gòu)的限制,制造方便,但是從動輪在每次間歇運動的始、末有劇烈沖擊,故一般只用于低速、輕載及機構(gòu)沖擊不影響正常的場合。若設(shè)置緩沖結(jié)構(gòu)可改善機構(gòu)的動力性能。
不完全齒輪機構(gòu)由三部分組成:主動輪與從動輪還有一對鎖止弧。主動輪上的凸弧和從動輪上的凹弧可以直接切出或裝配而成,也可以單獨制成一對鎖止??;緩沖結(jié)構(gòu),用以緩和活消除間歇運動始、末時的劇烈沖擊,改善機構(gòu)動力性能。
不完全齒輪的嚙合特性:每一次間歇運動,可以只由一對齒合來完成,也可以由若干對齒來完成。不完全齒輪機構(gòu)首、末兩對齒的擬合過程與完全齒輪機構(gòu)不同,而中間各對齒的擬合過程與完全齒輪相同。
由課題可知主動輪轉(zhuǎn)動一圈所用時間為0.2秒。由此我們可以確定與凸輪機構(gòu)同軸的從動輪與主動輪(不完全齒輪)的傳動比為1:5。參考《機械設(shè)計手冊單行本機構(gòu)》中不完全齒輪的內(nèi)容進行對不完全齒輪的設(shè)計與計算。
運動時間T1與靜止時間T2:間歇運動機構(gòu)從動輪的運動時間T1和靜止時間T2是設(shè)計的重要參數(shù)之一。當主動輪等速旋轉(zhuǎn)時,從動輪在一次間歇運動中的運動時間T1可以看成Z1=1時傳動所需的時間與(Z1-1)對中間齒傳動所需時間之和。
T1=(Qs+Qr/360°+Z1-1/Z·1)x60/n1
式中n1—主動輪轉(zhuǎn)速,r/min
T2=60/n1N-T1
式中N—主動輪每轉(zhuǎn)一轉(zhuǎn),完成間歇運動的次數(shù)。
2.6其他構(gòu)件設(shè)計
根據(jù)對切割機內(nèi)部主要機構(gòu)的設(shè)計以及計算了解了整個切割系統(tǒng)的工作原理,按照已給出的設(shè)計要求對切割機的箱體進行設(shè)計,根據(jù)《機械材料與公差》對箱體進行相關(guān)參數(shù)的設(shè)計。在考慮到刀架運動中可能遇到的卡死問題進行設(shè)計上的改良,在刀架的左右兩端進行放偏移固定。采用方案初步擬定為兩種:第一種為在刀架兩端各設(shè)計一個導(dǎo)桿裝置使得刀架只能進行上下運動。第二種為在刀架的兩端設(shè)定兩個導(dǎo)槽,使刀架固定進行上線運動。
第三章總結(jié)
在日常生活中食品是必不可少的,食品生產(chǎn)多樣化,使得很多食品的加工都具有了專用的加工機械,很多加工機械被研發(fā)制造并投入使用。但是一些食品加工機械還是非常落后的,不僅耗能高、效率低、安全性低而且不能保證食品加工的質(zhì)量。在對這個課題的研究過程中,逐步了解了食品切割機械的發(fā)展、要求,初步形成一套食品切割機的設(shè)計方案,在如何提高此類食品切割機的性能、安全性、效率及降低能耗等方面進行了探索。
第四章參考文獻
[1]成大先.機械設(shè)計手冊[M].第5版 北京:化學(xué)工業(yè)出版社,2010
[2]朱孝錄.齒輪傳動設(shè)計手冊[M]北京:北京化學(xué)工業(yè)出版社,2005
[3]楊黎明.機構(gòu)選型與運動設(shè)計[M]北京:國防工業(yè)出版社,2007
[4]朱龍英.機械設(shè)計基礎(chǔ)[M] 第2版 北京:機械工業(yè)出版社,2009
[5]鄧根清,陳義莊.機械制造基礎(chǔ) [M]北京:北京希望電子出版社2006
[6]申永勝.機械原理[M]北京:清華大學(xué)出版社,1999
[7]申榮華.工程材料及其成形技術(shù)基礎(chǔ)[M]北京:北京大學(xué)出版社,2008
[8]顏永年.先進制造技術(shù)[M]北京:北京化學(xué)工業(yè)出版社,2003
[9]袁巧霞.食品輸送機械與設(shè)備[M]北京:北京機械工業(yè)出版社,2010
[10]陳明.機械制造工藝學(xué)[M].北京:機械工業(yè)出版社,2005
[11]改進我國包裝機械設(shè)計方法的新思路
[EB/OL]http://www.gongkong.com/webpage/paper/201006/2010062511072800009.htm,2011.6.25
[12] Ben-Tal, A., Bar-Yoseph, P. Z., and Flashner, H., “Space-time spectral element method for vol. 39, pp. 3101–3121, 1996.
[13] Chapnik, B. V., Heppler, G. R., and Aplevich, J. D., “Controlling the impact response of a one-link ?exible robotic arm,” IEEE Transactions on Robotics and Automation, vol. 9, no. 3, pp. 346–351, 1993
收藏